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 A B S T R A C T

Accurate and spatially detailed urban energy consumption forecasting is crucial for sustainable urban develop-
ment. Existing methods often fail to capture the complex interplay of spatial and temporal factors influencing 
energy demand, hindering interpretability and limiting their effectiveness for targeted interventions. This 
paper presents a novel deep learning model for interpretable, multi-scale urban energy demand forecasting. 
Our approach leverages time series imaging to transform discrete energy consumption data into continuous 
spatial representations, generating energy consumption density maps. These maps are input to a deep 
learning encoder–forecaster architecture, enabling the model to learn intricate spatiotemporal dependencies. 
Crucially, by preserving the 2D spatial structure throughout the prediction process, our model offers enhanced 
interpretability compared to methods that reduce spatial information to 1D. We validate our model with 
real-world electricity data from Shanghai, demonstrating superior performance against traditional and state-
of-the-art benchmarks across various spatial granularities and forecasting horizons. For a 7-day forecast, our 
model achieves a Mean Squared Error (MSE) of 6.032. The resulting interpretable forecasts, visualized as 
density maps, provide actionable insights for urban planners, policymakers, and utility operators, promoting 
energy efficiency and facilitating the integration of renewable energy sources into the urban fabric.
1. Introduction

Urban centers, while engines of economic growth and innovation, 
are also disproportionate consumers of energy and significant contrib-
utors to global greenhouse gas emissions [1]. As the world’s population 
increasingly concentrates in urban areas, understanding and managing 
energy demand in these complex environments becomes paramount 
to achieving global sustainability goals [2]. Buildings, in particular, 
represent a substantial portion of urban energy consumption, account-
ing for up to 40% of total energy use and a significant share of 
CO2 emissions [3]. To mitigate the environmental impact of cities 
and transition towards more sustainable urban environments, accurate, 
granular, and robust energy demand forecasting methods are crucial. 
Accurate energy demand forecasting is fundamental for efficient urban 
energy management, impacting decisions for utilities, consumers, and 
urban planners. For utilities, precise forecasts optimize power genera-
tion, balance supply and demand, and ensure grid stability, particularly 
with increasing renewable energy integration [4,5]. For consumers, 
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accurate forecasts enable effective demand response, energy conser-
vation, and cost savings [6,7]. Moreover, reliable predictions inform 
long-term urban planning, guiding infrastructure investments, land use 
optimization, and energy-efficient building development [8,9].

Traditionally, energy demand forecasting has relied heavily on time-
series analysis methods, utilizing historical consumption data to predict 
future trends [10]. While these methods have proven valuable for 
capturing temporal dependencies in energy consumption patterns, they 
often fail to adequately account for the significant spatial heterogeneity 
inherent to urban environments. Factors such as population density, 
building typology, socio-economic activity, and micro-climatic vari-
ations can significantly impact energy consumption patterns across 
different locations within a city [11]. Neglecting these spatial dy-
namics can lead to inaccurate forecasts, hindering the effectiveness 
of energy management strategies and potentially undermining efforts 
toward building more sustainable and resilient cities. Furthermore, 
energy consumption data is characterized by a high degree of mul-
tivariate complexity and high latitude, which presents a significant 
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challenge in fully capturing its inherent features. Recognizing the lim-
itations of traditional approaches, recent research has explored the 
potential of deep learning techniques, particularly convolutional neural 
networks (CNNs), to address the challenges of spatiotemporal data 
analysis in energy demand forecasting [12]. CNNs, originally devel-
oped for image recognition tasks, have shown remarkable capabilities 
in extracting complex spatial patterns from data [13]. Shallow con-
volutional networks excel at capturing local features like individual 
electricity consumption patterns, as the network deepens, each layer 
of convolution further abstracts the features extracted by the previ-
ous layer, enabling multi-scale urban energy consumption predictions 
for both individuals and regions. Coupled with time series imaging 
techniques, which convert traditional time-series data into image-like 
representations, CNNs can be leveraged to effectively capture both 
spatial and temporal dependencies in energy consumption data. This 
approach has been successfully applied in various domains, including 
precipitation nowcasting [14], traffic flow prediction [15], and, more 
recently, energy consumption forecasting [16–18].

Building on these advancements, this paper proposes a novel deep 
learning model for interpretable, multi-scale urban energy demand 
forecasting. Unlike existing methods that often reduce spatial informa-
tion to one-dimensional representations, our model explicitly incorpo-
rates spatiotemporal information through a two-dimensional time series 
imaging approach, preserving crucial spatial context for enhanced in-
terpretability. Our approach leverages kernel density estimation (KDE) 
to transform discrete, spatially distributed energy consumption data 
into continuous spatial representations, generating energy consump-
tion density maps. These maps serve as input to a deep learning 
encoder–forecaster architecture, enabling the model to learn complex 
spatiotemporal dependencies and generate accurate forecasts across a 
range of spatial granularities.

Building on these advancements, this paper proposes a novel deep 
learning model for interpretable, multi-scale urban energy demand 
forecasting. Unlike existing methods that often reduce spatial infor-
mation to one-dimensional representations, our model explicitly incor-
porates spatiotemporal information through a two-dimensional spatial 
representation time series imaging approach, preserving crucial spatial 
context for enhanced interpretability. Our approach leverages kernel 
density estimation (KDE) to transform discrete, spatially distributed 
energy consumption data into continuous spatial representations, gen-
erating energy consumption density maps. These maps serve as input 
to a deep learning encoder–forecaster architecture, enabling the model 
to learn complex spatiotemporal dependencies and generate accurate 
forecasts across a range of spatial granularities. A key advantage of 
our approach lies in its enhanced interpretability. By preserving the 
2D spatial structure of the data throughout the prediction process, 
our model generates forecasts that can be readily visualized and un-
derstood in their spatial context. This allows stakeholders to gain 
a deeper understanding of how geographical factors influence en-
ergy consumption patterns and to develop more targeted and effective 
energy management strategies.

This work makes the following key contributions to the field of 
sustainable urban development:

• A novel framework for interpretable, multi-scale urban en-
ergy demand forecasting using 2D spatiotemporal deep learn-
ing: We introduce a novel framework that integrates time series 
imaging, KDE, and a deep learning encoder–forecaster architec-
ture. This framework explicitly incorporates spatial heterogeneity 
by working directly with 2D density maps, enabling more ac-
curate and granular forecasts at multiple spatial scales, from 
individual buildings to city districts, while maintaining crucial 
spatial context for enhanced interpretability.

• End-to-end prediction and reconstruction for flexible, area-
specific energy demand forecasting: Our model employs a 
novel end-to-end prediction approach using an encoder–forecaster
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architecture trained to directly predict future energy consumption 
density maps. We introduce novel reconstruction methods that 
extract energy demand values from these density maps for any 
area of interest, providing a powerful tool for multi-scale targeted 
energy management and planning.

• Rigorous validation demonstrating superior performance and
enhanced interpretability for informed urban planning: We 
rigorously evaluate our model using real-world electricity con-
sumption data from Shanghai, China. Our results demonstrate su-
perior accuracy compared to traditional forecasting methods and 
other state-of-the-art spatiotemporal prediction models. Further-
more, we highlight the enhanced interpretability of our approach, 
demonstrating how the generated density maps provide valuable 
spatial insights for urban planners and policymakers.

The remainder of this paper is structured as follows: Section 2 re-
views the related work. Section 3 presents the dataset used in this study; 
Section 4 presents the methods; Section 5 conducts experiments to 
evaluate the model; Section 6 discusses the related issues and Section 7 
concludes the paper and presents the future work.

2. Related work

Accurately forecasting urban energy demand is crucial for achieving 
a more sustainable future for cities. It enables informed planning, 
optimized resource allocation, and informed policies to promote energy 
efficiency and the integration of renewable energy sources [5]. This sec-
tion reviews existing energy demand prediction methods, highlighting 
their strengths, limitations, and relevance to sustainable urban devel-
opment. We begin by exploring traditional approaches, focusing on 
their ability to address the unique challenges of forecasting in complex 
urban environments. Subsequently, we delve into the emerging field of 
deep learning-based spatiotemporal forecasting, which holds significant 
promise for capturing the intricate interplay of spatial and temporal 
factors driving energy consumption in cities.

2.1. Traditional energy demand forecasting approaches

Energy consumption forecasting methods can be categorized based 
on their underlying principles and complexity. Somu et al. [11] clas-
sify these methods into three main categories: engineering methods, 
statistical methods, and artificial intelligence (AI) methods. Another 
common classification within the building energy domain distinguishes 
between black-box, white-box, and gray-box models [19]. Although 
these classifications offer valuable perspectives, we have categorized 
them into statistical, machine learning, and artificial intelligence (AI) 
methods due to their comprehensive representation of the diverse 
methodologies employed in energy demand forecasting.

Table  1 presents a selection of state-of-the-art methods within these 
three categories, along with a summary of their strengths and weak-
nesses.

Statistical methods offer a computationally efficient approach for 
short-term energy demand forecasting, particularly when dealing with 
relatively stable consumption patterns. However, their limitations in 
capturing non-linear relationships and external influences hinder their 
accuracy for long-term predictions and their ability to adapt to the 
dynamic nature of urban environments [45]. Machine learning methods 
offer a promising approach for energy demand forecasting by detecting 
patterns in data without extensive domain knowledge. Techniques like 
regression, support vector machines, and decision trees can model both 
linear and nonlinear relationships, enabling more accurate short and 
medium-term predictions than traditional methods. ML models can also 
adapt to changing consumption patterns and integrate external factors 
like weather and socio-economic data, making them useful for dynamic 
urban environments. However, handling complex, high-dimensional, 
and long-term dependent time-series data often requires significant 
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Table 1
List of some state-of-the-art methods for energy demand forecasting.
 Ref. Methods Description Strengths and Weaknesses  
 Statistical methods
 Ramanathan 
et al. [20]

Multiple 
regression

This study develops multiple regression models 
for short-term forecasting of hourly system 
loads, utilizing historical data on electrical 
loads and weather conditions. These models 
aim to capture the relationship between energy 
demand and multiple explanatory variables, 
improving forecast accuracy.

Strengths: Computationally efficient, 
interpretable. Weaknesses: Limited in 
capturing non-linear relationships, 
less adaptable to dynamic 
environments.

 

 Pappas et al. 
[21]

ARIMA This study utilizes ARIMA models to simulate 
and forecast energy production and 
consumption in Asturias, Spain, highlighting 
the model’s applicability for regional energy 
planning and policy analysis.

Strengths: Effective for time series 
with temporal dependencies, 
accounts for seasonality. Weaknesses: 
Assumes data stationarity, struggles 
with complex patterns.

 

 Reikard 
[22], Huang 
et al. 
[23], Atique 
et al. 
[24], Alsharif 
et al. [25]

ARMA, 
ARIMA, 
SARIMA

Autoregressive Moving Average (ARMA), 
Autoregressive Integrated Moving Average 
(ARIMA), and Seasonal ARIMA (SARIMA) 
models are widely used statistical methods for 
energy demand forecasting, particularly in 
applications involving seasonal or cyclical 
patterns. These models have been successfully 
applied to solar forecasting and other 
renewable energy applications.

Strengths: Widely applicable, 
captures linear temporal 
dependencies and seasonality. 
Weaknesses: Limited in capturing 
non-linearities and spatial variations, 
requires stationarity.

 

 Server et al. 
[26], Walter and 
Sohn [27]

Linear 
regression

Linear regression models are a simple yet 
widely used statistical method for electricity 
load forecasting and building energy 
monitoring, providing a baseline for assessing 
the performance of more complex methods.

Strengths: Simple, computationally 
efficient, interpretable baseline. 
Weaknesses: Oversimplifies complex 
relationships, low accuracy for 
long-term forecasts.

 

 Lazos et al. [28] Time series 
analysis

Time series analysis techniques, particularly 
autoregressive models, are widely employed in 
energy demand forecasting. These models 
correlate the future value of a variable with its 
past values, capturing temporal dependencies 
in energy consumption patterns.

Strengths: Computationally efficient, 
captures temporal autocorrelation. 
Weaknesses: Ignores spatial 
heterogeneity, limited non-linear 
pattern recognition.

 

 Xu et al. [29] Grey model, 
Time 
response 
function 
(TRF) and 
nonlinear 
optimization 
method

This study proposes a novel grey model 
incorporating an optimized Time Response 
Function (TRF) to enhance short-term 
electricity consumption forecasting. The authors 
utilize a nonlinear optimization method to 
fine-tune the model’s parameters, improving its 
accuracy and adaptability for predicting 
electricity demand.

Strengths: Effective with limited 
data, captures non-linear trends to 
some extent. Weaknesses: Less 
accurate with large datasets, limited 
in capturing complex 
spatial–temporal dynamics.

 

 Wu et al. [30] Grey convex 
relational 
analysis, 
GMC(1,N) 
model

This study develops a novel multi-variable grey 
forecasting model for electricity consumption 
forecasting that explicitly considers the 
influence of population growth. The model 
employs grey convex relational analysis and is 
optimized using the GMC(1,N) model with 
fractional-order accumulation, enhancing its 
predictive capabilities.

Strengths: Incorporates multiple 
variables, improved accuracy over 
basic grey models. Weaknesses: Still 
limited by grey model assumptions, 
less adaptable than AI methods.

 

 Mui et al. [31] Bayesian 
regularization 
and a genetic 
algorithm

This study focuses on estimating annual cooling 
energy consumption for diverse building types 
in subtropical regions, using a hybrid 
simulation approach that combines Bayesian 
regularization with a genetic algorithm to 
optimize model parameters. The authors 
propose a generalized method for reducing 
energy consumption and greenhouse gas 
emissions in buildings.

Strengths: Accounts for uncertainty, 
optimizes model parameters 
effectively. Weaknesses: 
Computationally intensive, 
complexity in implementation.

 

 Wang et al. [32] A structural 
adaptive 
Caputo 
fractional 
grey 
prediction 
model 
(FCSAGM)

This study introduces a novel grey prediction 
model for energy consumption forecasting, 
employing Caputo fractional derivatives to 
capture the dynamics of energy consumption 
patterns. The FCSAGM model’s parameters are 
adjusted using the particle swarm optimization 
(PSO) method, enhancing its adaptability and 
accuracy for forecasting energy demand.

Strengths: Captures complex 
dynamics, adaptive parameter tuning. 
Weaknesses: Grey model limitations, 
computational cost of PSO.

 

 (continued on next page)
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Table 1 (continued).
  Machine learning methods
 Voulis et al. [33] K-means 

clustering 
and logistic 
regression

This study employs K-means clustering and 
logistic regression to systematically analyze 
electricity demand patterns at different city 
scales in the Netherlands. The research 
highlights the spatial variations in energy 
consumption and provides insights into the 
factors influencing demand across different 
urban areas.

Strengths: Captures spatial variations, 
interpretable clusters. Weaknesses: 
Limited to linear relationships, 
clustering accuracy depends on 
feature selection.

 

 Dubey et al. 
[34]

ARIMA, 
SARIMA, 
LSTM

This study compares the performance of 
ARIMA, SARIMA, and Long Short-Term 
Memory (LSTM) models for predicting daily 
energy consumption using smart meter data in 
London. The research provides a 
comprehensive evaluation of these methods, 
highlighting their strengths and limitations for 
urban energy demand forecasting.

Strengths: Captures temporal 
dependencies, LSTM handles 
non-linearities. Weaknesses: Ignores 
spatial data, LSTM computationally 
intensive.

 

 Feng et al. [35] A stochastic 
shading 
building 
model

This study investigates the uncertainty 
associated with shading in building energy 
models, using a stochastic shading model that 
incorporates time, temperature, solar radiation, 
and shading coefficients. The research employs 
machine learning algorithms, the Shapley Value 
Method, and hyperparameter optimization to 
refine and optimize the model, aiming to 
improve the accuracy of energy consumption 
predictions for buildings.

Strengths: Quantifies uncertainty, 
physics-informed approach. 
Weaknesses: Complexity in model 
development, computationally 
intensive.

 

  Artificial intelligence methods
 Peng et al. [36] Empirical 

Wavelet 
Transform 
(EWT)-
attention-
LSTM

This study proposes a novel hybrid model for 
long-term energy consumption prediction, 
combining Empirical Wavelet Transform (EWT), 
an attention mechanism, and an LSTM 
network. The EWT module decomposes the 
input data into multiple frequency components, 
enhancing the model’s ability to capture 
complex temporal patterns.

Strengths: Hybrid approach, captures 
complex temporal patterns 
effectively. Weaknesses: Black-box 
nature, computationally intensive.

 

 Jin et al. [37] Singular 
spectrum 
analysis 
(SSA) and 
parallel long 
short term 
memory 
(PLSTM)

This study introduces a parallel LSTM model 
for energy consumption forecasting at both the 
appliance level and the individual appliance 
level. The model utilizes Singular Spectrum 
Analysis (SSA) to decompose the input data 
into multiple sub-signals, improving prediction 
accuracy by capturing different frequency 
components of the energy consumption data.

Strengths: Appliance-level forecasting, 
captures multi-frequency temporal 
patterns. Weaknesses: High data 
demand, computational complexity.

 

 Elbeltagi and 
Wefki [38]

ANNs This study employs Artificial Neural Networks 
(ANNs) to improve the prediction of energy 
usage for residential buildings. The research 
highlights the effectiveness of ANNs in 
capturing non-linear relationships and complex 
patterns in building energy consumption data.

Strengths: Captures non-linear 
relationships, adaptable to various 
data types. Weaknesses: Black-box 
nature, requires large datasets.

 

 Jin et al. [39] Deep Rein-
forcement 
Learning 
(DRL)

This study proposes a novel method for 
building energy consumption prediction that 
leverages Deep Reinforcement Learning (DRL). 
The model focuses on improving prediction 
accuracy at fluctuation points, which are 
critical for energy management and demand 
response applications.

Strengths: Optimized for fluctuation 
points, potential for real-time 
control. Weaknesses: Complex to 
train, high computational cost.

 

 (continued on next page)
4 



S. Jia et al. Energy 334 (2025) 137503 
Table 1 (continued).
 Liu et al. [40] A3C, DDPG 

and RDPG
This study investigates the use of three 
prominent Deep Reinforcement Learning (DRL) 
techniques – A3C, DDPG, and RDPG – for 
energy consumption forecasting in an office 
building. The research compares their 
performance to traditional supervised learning 
models, highlighting the potential of DRL for 
optimizing energy management strategies in 
buildings.

Strengths: DRL for energy 
management, adaptive learning. 
Weaknesses: High complexity, 
requires extensive hyperparameter 
tuning.

 

 Zhong et al. [41] Vector 
field-based 
support 
vector 
regression 
(SVR)

This study introduces a novel vector field-based 
Support Vector Regression (SVR) model for 
energy demand prediction. The model 
transforms the highly non-linear relationship 
between input and output variables into a 
linear relationship, enhancing prediction 
accuracy, robustness, and generalization ability.

Strengths: Handles non-linearities, 
robust and generalizable. 
Weaknesses: Computational cost with 
large datasets, less effective than 
deep learning for complex patterns.

 

 Ozcan et al. [42] RNN with 
dual-stage 
attention 
mechanism

This study proposes a Recurrent Neural 
Network (RNN) model for electric load 
prediction, incorporating a dual-stage attention 
mechanism in both the encoding and 
forecasting stages. This mechanism enables the 
model to selectively focus on the most relevant 
temporal features, improving prediction 
accuracy.

Strengths: Attention mechanism for 
feature selection, captures temporal 
dependencies. Weaknesses: RNN 
limitations with long sequences, 
computationally intensive.

 

 Muralitharan 
et al. [43]

Neural 
network + 
GA + PSO

This study explores a novel approach for 
optimizing neural networks for energy demand 
prediction using Genetic Algorithms (GA) and 
Particle Swarm Optimization (PSO). The 
research finds that the GA-based method 
performs better for short-term prediction, while 
the PSO-based method is more suitable for 
long-term forecasting.

Strengths: Optimized neural 
networks, GA/PSO for parameter 
tuning. Weaknesses: Increased 
complexity, computational cost of 
optimization.

 

 Le et al. [44] CNN + 
Bi-LSTM

This study proposes a hybrid model combining 
a Convolutional Neural Network (CNN) and a 
Bidirectional Long Short-Term Memory 
(Bi-LSTM) network to enhance electricity 
consumption prediction accuracy. The model 
leverages the strengths of both CNNs for spatial 
feature extraction and Bi-LSTMs for capturing 
temporal dependencies.

Strengths: Hybrid CNN-BiLSTM, 
captures spatiotemporal features. 
Weaknesses: Complexity in model 
design, computationally intensive.

 

feature engineering and intervention, limiting generalization. Artificial 
intelligence methods have emerged as a powerful tool for energy de-
mand forecasting, demonstrating significant advancements in capturing 
complex patterns and improving prediction accuracy. Within AI meth-
ods, Zeroing Neural Networks (ZNNs) have been explored for dynamic 
system problem-solving, with research focusing on enhancing their con-
vergence speed and robustness [46,47]. Hybrid approaches, combining 
multiple AI techniques and incorporating advanced data processing 
methods, offer promising avenues for addressing the challenges of 
forecasting in urban settings [35,48–51]. Despite these advancements, 
traditional methods often treat energy consumption as a single time 
series, overlooking the significant spatial variations inherent to urban 
environments. This approach limits their ability to provide the gran-
ular, location-specific forecasts necessary for effective urban energy 
management and planning in the context of sustainable development 
goals.

2.2. Deep learning-based spatiotemporal forecasting for sustainable cities

Recognizing the importance of spatial heterogeneity, recent re-
search has focused on developing deep learning-based spatiotemporal 
forecasting models, particularly those leveraging convolutional neural 
networks (CNNs) to extract complex spatial patterns from data [52,
53]. These models offer a promising avenue for providing accurate, 
granular, and dynamically adaptable forecasts crucial for building sus-
tainable and resilient urban energy systems. However, many existing 
approaches, while incorporating spatial features, often reduce the prob-
lem to one-dimensional representations, effectively flattening the spa-
tial context and limiting the interpretability of the resulting forecasts.
5 
Several studies have demonstrated the effectiveness of CNN-based 
approaches for spatiotemporal energy demand forecasting. Peng et al. 
[52] introduced a potential flow-based spatiotemporal model for urban 
energy demand. Bu and Cho [54] proposed a deep learning model 
combining multi-headed attention with a convolutional recurrent neu-
ral network to predict residential energy consumption. Other research 
has leveraged CNNs in conjunction with recurrent neural networks 
(RNNs), such as Long Short-Term Memory (LSTM) networks, to cap-
ture both spatial and temporal dependencies [11,44,55–58]. Recent 
advancements have incorporated attention mechanisms to enhance 
performance. Ozcan et al. [42] proposed a deep-learning model using 
dual-stage attention-based RNNs, and Lilhore et al. [59] presented a 
hybrid deep learning model with two-way attention and multi-objective 
particle swarm optimization for short-term load prediction. Additional 
studies explicitly modeled spatial autocorrelation effects [60–63]. Fur-
thermore, Peng et al. (2024) proposed a spatiotemporal feature fusion 
model based on graph neural networks for user-level energy consump-
tion forecasting. These studies highlight the importance of considering 
spatiotemporal information for accurate energy demand prediction.

Despite these advancements, a key limitation of many existing 
spatiotemporal forecasting models is their reduced interpretability. By 
transforming spatial data into 1D representations, these models obscure 
the spatial relationships and distributions crucial for understanding the 
factors driving energy demand and for developing targeted interven-
tions. Moreover, existing methods often overlook the multi-scale nature 
of urban energy demand, which varies significantly across different 
spatial granularities, from individual buildings to neighborhoods and 
city-wide levels.
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This research addresses these limitations by proposing a novel 
deep learning model for interpretable, multi-scale urban energy de-
mand forecasting. Our model integrates time series imaging, kernel 
density estimation, and a deep learning encoder–forecaster architec-
ture to capture the complex spatiotemporal dynamics of urban energy 
consumption. Critically, our model preserves the 2D representation 
of spatial data, allowing for direct visualization of predicted energy 
consumption patterns and enabling more informed decision-making. 
Furthermore, we introduce reconstruction methods to calculate energy 
demand values for specific areas of interest from the predicted density 
maps, facilitating informed decision-making at various spatial scales. 
By providing accurate, granular, and interpretable energy demand fore-
casts, our model contributes to the development of more sustainable, 
efficient, and resilient cities.

3. Materials

In this study, we utilize real-world electricity consumption data 
from the Pudong District of Shanghai, China. Shanghai, a rapidly grow-
ing megacity and a global economic hub, faces significant challenges re-
lated to energy sustainability and efficient resource management [64]. 
We selected Shanghai as the case study city due to its status as a 
representative megacity with substantial energy consumption and well-
developed smart grid infrastructure, ensuring data availability and 
relevance to global urban energy challenges. The Pudong District, 
located east of the Huangpu River, is characterized by a diverse mix 
of land uses, ranging from high-density commercial and financial cen-
ters to residential neighborhoods, making it an ideal case study for 
exploring the spatiotemporal dynamics of urban energy consumption. 
The electricity consumption data, collected from smart meters by the 
State Grid Corporation of China (SGCC), was preprocessed using Kernel 
Density Estimation (KDE) to transform discrete point readings into 
continuous energy density maps, which then serve as input to our deep 
learning model for spatiotemporal forecasting. This process allows us to 
capture both spatial and temporal variations in urban energy demand.

Our dataset encompasses a three-year period from July 1, 2015, 
to June 23, 2018. It includes electricity consumption data from 9,333 
anonymized sample customers within Pudong, recorded at a 12-hour 
resolution via smart meters, ensuring relatively high accuracy and 
completeness. Each customer is associated with specific longitude and 
latitude coordinates, enabling spatial analysis of consumption patterns 
across the district. To highlight the spatial variations in energy demand, 
we focus on two representative areas: one primarily commercial and 
the other residential. Fig.  1 illustrates the distinct load curves for 
these areas in 2017. As depicted, commercial customer consumption 
is notably higher and more stable annually compared to residential 
consumption, which exhibits seasonal variations. This difference is 
attributed to the continuous operation of commercial buildings, which 
often rely on energy-intensive systems for lighting, HVAC, and other 
equipment. In contrast, residential electricity consumption is influenced 
by seasonal factors and displays cyclical variations, with higher con-
sumption during the summer and winter months likely due to increased 
use of air conditioning and heating systems.

Prior to model training, the raw data underwent several preprocess-
ing steps to ensure quality and suitability. Missing values, less than 
1% of the dataset, were imputed using linear interpolation. Outlier 
detection was performed using a z-score threshold of 3, and identi-
fied outliers were capped to the 99th percentile. Energy consumption 
values were normalized to a [0, 1] range using min–max scaling for 
improved model stability. Finally, spatial coordinates were transformed 
to a local Cartesian system to facilitate KDE processing. The dataset 
exhibits high quality and completeness due to the use of smart meter 
technology and the rigorous data collection process by SGCC. Smart 
meters provide accurate and reliable measurements of electricity con-
sumption. The completeness is high, with missing values less than 1%, 
6 
which were handled using linear interpolation. However, like any real-
world dataset, potential issues such as sensor errors or communication 
disruptions might exist, although expected to be minimal. SGCC, as a 
major utility provider, maintains strict quality control measures, further 
ensuring data reliability. The resulting preprocessed dataset, derived 
from real-world smart meter readings in Shanghai Pudong, provides a 
robust foundation for evaluating our deep learning model’s ability to 
capture complex spatiotemporal urban energy consumption dynamics 
and contribute to sustainable urban development.

The above analysis demonstrates the significant influence of both 
spatial and temporal information on electricity consumption, highlight-
ing the importance of incorporating both aspects into our prediction 
model. This enables accurate electricity consumption forecasting for 
any area of interest, contributing to more effective urban energy man-
agement and planning towards sustainable urban development. This 
real-world data from Shanghai’s Pudong District will be used to train 
and evaluate our proposed deep learning model in the subsequent 
sections, allowing us to assess its effectiveness in capturing the complex 
spatiotemporal dynamics of urban energy consumption and its potential 
for contributing to the development of more sustainable cities.

4. Methodology

This section will first define the research problem, then present an 
overview of our proposed deep learning-based model for interpretable, 
multi-scale urban energy demand forecasting, and finally explain the 
modules in detail.

4.1. Problem formulation

Accurate urban energy demand forecasting is essential for sustain-
able urban development, yet existing methods struggle to provide both 
high accuracy and interpretability, particularly when considering the 
complex interplay of spatial and temporal factors. Traditional time 
series forecasting approaches, while effective at capturing temporal 
patterns, often neglect the significant spatial heterogeneity inherent in 
urban environments. Many spatiotemporal methods, in their attempt to 
incorporate spatial data, reduce it to one-dimensional representations, 
sacrificing valuable spatial context and consequently limiting the inter-
pretability of forecasts. This lack of interpretability hinders the ability 
to gain actionable insights for targeted energy management interven-
tions and informed urban planning. Therefore, the core problem we 
address is the need for an energy forecasting model that is not only 
accurate and multi-scale but also inherently interpretable, preserving 
spatial information to enable effective decision-making.

To address this problem, we propose a novel approach focusing 
on interpretable, multi-scale spatiotemporal forecasting. We begin by 
defining the conventional time series forecasting problem, where the 
goal is to predict future energy consumption (𝑋) based on historical 
data: The time sequence of energy consumption can be defined as 
𝑋1∶𝑡 = [𝑋1, 𝑋2,… , 𝑋𝑡], where 𝑋𝑡 ∈ R𝐶 represents the 1D tensor of 
energy consumption measurements for 𝐶 customers at time 𝑡. The time 
series forecasting problem of energy consumption can be expressed as:
𝑋̂𝑡+1,… , 𝑋̂𝑡+𝐾 = argmax

𝑋𝑡+1 ,…,𝑋𝑡+𝐾

𝑝(𝑋𝑡+1,… , 𝑋𝑡+𝐾 |𝑋𝑡−𝑇+1,… , 𝑋𝑡), (1)

where 𝑋𝑡−𝑇+1,… , 𝑋𝑡 denotes the given tensor sequence with a time step 
𝑇 . Time prediction based on the historical tensor sequence involves 
forecasting the most probable future sequence of length 𝐾.

However, as noted, this approach lacks spatial context. To incorpo-
rate spatial information and enhance interpretability, we transform the 
discrete spatial consumption readings into a continuous 2D represen-
tation using Kernel Density Estimation (KDE) (illustrated in Fig.  2 and 
detailed in Section 4.3). This generates a grid of 𝑁 𝑥 𝑁 cells, where 
each cell represents a pixel in a density map. This allows us to model 
the spatiotemporal energy consumption problem (now represented by 
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Fig. 1. Electricity consumption patterns in commercial and residential areas within Shanghai’s Pudong District (2017). The figure displays the 12-hour resolution load curves for 
representative commercial and residential areas in Pudong, Shanghai, for the year 2017. It clearly illustrates the higher overall consumption and stability in commercial areas 
compared to the fluctuating, seasonally-influenced residential consumption.
) as a two-dimensional dense prediction problem in image processing: 
A spatiotemporal sequence of measurements, denoted as  (distinct 
from the temporal data 𝑋), is defined as 1∶𝑡 = [1,2,… ,𝑡], where 
𝑡 ∈ R𝑁2×(𝐶+𝐷). Here, 𝐷 is the number of random sampling measures 
within a coordinate, and 𝐶 is the dimension of the coordinate (lon-
gitude, latitude), i.e., 𝐶 = 2. The energy consumption density at grid 
cell (𝑥, 𝑦) at time slot 𝑡 is represented by 𝑡(𝑥, 𝑦). The energy demand 
forecasting task translates to predicting energy consumption density for 
all map grid cells over 𝐾 time steps after time 𝑡, using historical data 
with a time step 𝑇 . The spatiotemporal sequence prediction is defined 
as:

̂𝑡+1(𝑥, 𝑦),… , ̂𝑡+𝐾 (𝑥, 𝑦)

= argmax
𝑡+1(𝑥,𝑦),…,𝑡+𝐾 (𝑥,𝑦)

𝑝(𝑡+1(𝑥, 𝑦),… ,𝑡+𝐾 (𝑥, 𝑦)|𝑡−𝑇+1(𝑥, 𝑦),… ,𝑡(𝑥, 𝑦))

(2)
This 2D representation is central to our model’s enhanced inter-

pretability, enabling direct visualization of the predicted energy dis-
tribution across the urban landscape.

4.2. Overview of the proposed model

This section presents an overview of our proposed novel deep 
learning model for interpretable, multi-scale urban energy demand 
forecasting. The model addresses the limitations of existing approaches 
by incorporating spatial heterogeneity through a unique combination 
of time series imaging, kernel density estimation (KDE), and a robust 
encoder–forecaster architecture. Critically, by preserving the 2D spatial 
context of the data, our model offers enhanced interpretability com-
pared to 1D methods. This architecture, trained end-to-end, enables 
accurate and granular predictions across various spatial scales, provid-
ing valuable insights for diverse stakeholders. Figs.  3 and 4 provide 
visualizations of the framework and its procedure.

The process begins with raw energy consumption data collected 
from various sources, such as smart meters, building management 
systems, and publicly available datasets. This raw data, often discrete 
and irregularly distributed in space, is first passed through a data pre-
processing layer. Here, we employ KDE to create a continuous spatial 
representation of energy consumption for each time step, generating 
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a series of energy consumption density maps. This transformation to 
continuous density maps is crucial for enabling the subsequent appli-
cation of convolutional neural networks (CNNs), which are particularly 
effective at extracting spatial features. To further enhance the model’s 
robustness and ability to generalize to unseen data, we employ a noise 
injection technique during training. This involves adding random per-
turbations to the density maps, which helps to prevent overfitting and 
improves the model’s ability to handle noisy or incomplete real-world 
data.

The resulting sequence of energy consumption density maps serves 
as input to the core of our model: the AI-based spatiotemporal forecast-
ing engine. This engine utilizes a novel encoder–forecaster architecture 
based on stacked neural networks. This design is specifically chosen 
for its ability to capture the intricate spatiotemporal dependencies 
inherent in urban energy consumption data. The encoder network 
effectively compresses the input sequence into a lower-dimensional 
latent representation, capturing the essential spatial and temporal fea-
tures. This compressed representation is then passed to the forecaster 
network, which decodes the latent information to generate a sequence 
of predicted energy consumption density maps. Within this encoder–
forecaster framework, we explore and compare four prominent AI-
based spatiotemporal prediction models — ConvLSTM, ConvGRU, Pre-
dRNN, and SA-ConvLSTM — each tailored to leverage the unique 
characteristics of urban energy consumption data. This comparative 
analysis allows us to identify the most effective model for this specific 
application.

Finally, our novel reconstruction module processes the predicted 
density maps, bridging the gap between the continuous spatial repre-
sentations and the desired output: time series data for specific locations 
or areas of interest. This module employs a time series reconstruction 
technique based on bilinear interpolation. This allows us to accu-
rately estimate energy demand values at arbitrary spatial locations 
within the predicted density maps, offering a high degree of flexibil-
ity in generating forecasts for specific areas of interest. This enables 
our model to provide granular, location-specific forecasts that can 
inform targeted energy management strategies and support data-driven 
decision-making for sustainable urban planning. The final output is 
a predicted time series of energy demand, tailored to the specific 
spatial scale and location desired by the user, facilitating informed 
decision-making for a variety of stakeholders.
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Fig. 2. Transforming discrete spatial data into a continuous 2D representation via Time Series Imaging using KDE. The left panel shows discrete energy consumption data points. 
The right panel represents the generated energy consumption density map via Kernel Density Estimation (KDE), illustrating the conversion of point-based time series data into a 
continuous spatial representation for each time step, effectively creating a ‘‘time series image’’.
Fig. 3. Overview of the proposed spatiotemporal prediction model. The framework consists of four main stages: Data Preprocessing, Spatiotemporal Forecasting Engine, 
Reconstruction, and Output. The Data Preprocessing stage transforms raw energy consumption data into density maps using KDE. The Forecasting Engine, based on an encoder–
forecaster architecture with stacked AI-based spatiotemporal prediction models, predicts future density maps. The Reconstruction module extracts energy demand forecasts for 
specific areas of interest. Finally, the Output provides interpretable, multi-scale energy demand forecasts.
Fig. 4. Step-by-step procedure of the proposed framework. This flowchart details the sequential steps of our proposed framework, from raw data input to final interpretable 
forecast output. It illustrates the flow through data preprocessing using KDE, encoding and forecasting with AI-based models, and reconstruction via bilinear interpolation to obtain 
area-specific energy demand predictions.
8 
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4.3. Data preprocessing

As the data are spatially discrete and irregularly distributed, we 
employ a kernel density estimation (KDE)-based approach to encode 
discrete household energy consumption into a continuous representa-
tion suitable for processing by convolutional networks. Kernel Density 
Estimation (KDE) serves as our time series imaging technique to trans-
form the raw time series data into a sequence of spatial density maps. 
Specifically, for each time step in our energy consumption time series 
data, we apply KDE to convert the discrete customer consumption 
points into a continuous spatial density map, representing the energy 
consumption distribution across the urban area at that specific time. 
This process is repeated for every time step, resulting in a sequence of 
density maps that capture the spatiotemporal evolution of urban energy 
demand in an image-like format, suitable for input to our CNN-based 
deep learning model. The KDE function is defined by: 

𝑓ℎ(𝑥) =
𝑛
∑

𝑖=1
𝑐𝑖𝐾ℎ(𝑥 − 𝑥𝑖) (3)

where 𝑥𝑖 denotes the spatial location of customer 𝑖 in terms of longitude 
and latitude (𝑙𝑜𝑛𝑖, 𝑙𝑎𝑡𝑖), 𝑐𝑖 is a vector of (𝑝𝑎𝑝𝑟, 𝑝𝑎𝑝𝑟1, 𝑝𝑎𝑝𝑟2) which are 
normalized energy consumption values representing total energy de-
mand, peak period demand and off-peak period demand, respectively. 
This vector is used to reweight the demand strength with respect to 
geographic distribution. In this paper, we use the Gaussian kernel to 
estimate the energy consumption density at each location, defined as: 

𝐾ℎ(𝑥 − 𝑥𝑖) = 𝑒−
‖𝑥−𝑥𝑖‖2

2ℎ2 (4)

where ℎ is the kernel bandwidth that controls the smoothness of the 
density estimate.

The generated density maps will serve as input data for the training 
process. The spatial resolution of the density map will influence the 
accuracy of the forecasting. Low-resolution density maps may lose the 
detail of spatial energy consumption distribution. However, a high-
resolution density map will increase the computational complexity and 
may reduce the spatial granularity of the prediction, which damages the 
robustness of forecasting. To balance these factors, we set the width of 
the grid cell 𝑊 = 0.04 and the kernel bandwidth ℎ = 0.015 to obtain 
the density map and adjust the size of the input to the neural network 
to 64 × 64 (the neural network types will be described later). The 
reason for this choice is that it provides a reasonable trade-off between 
accuracy and efficiency. We choose 𝑊  and ℎ based on the average 
distance between the data points and the desired level of smoothness 
of the density estimate. We choose the input size of 64 × 64 based on 
the optimal performance of the convolution network on image data.

4.4. Proposed model

In this section, we detail our proposed deep learning model, first 
presenting the encoder–forecaster architecture and then describing the 
four types of AI-based spatiotemporal modules (ST-Prediction) used 
for sequence prediction within this architecture. All four AI-based spa-
tiotemporal prediction models (ConvLSTM, ConvGRU, PredRNN and 
SA-ConvLSTM) utilize convolutional operators rather than matrix mul-
tiplication in their recurrent layers to process spatiotemporal data. 
This approach enables the models to efficiently capture spatial features 
and temporal dependencies simultaneously. We selected these four 
representative models to comprehensively evaluate the performance of 
different spatiotemporal recurrent architectures within our encoder–
forecaster framework and identify the most effective approach for 
urban energy demand forecasting.
9 
4.4.1. Encoder–forecaster architecture
The proposed spatiotemporal prediction model uses an encoder–

forecaster architecture [65], a type of neural network commonly used 
for sequence-to-sequence tasks such as machine translation, summa-
rization, and image captioning. It consists of two main components:

• Encoder Architecture: The encoder processes the input sequence 
of energy consumption density maps and converts them into a 
compact, latent representation. This representation encodes the 
essential spatial and temporal features of the input. Our encoder 
consists of four convolutional layers. The first two convolutional 
layers have 64 filters with a kernel size of 5 × 5, followed by 
max pooling layers with a kernel size of 2 × 2 and a stride of 2. 
The third and fourth convolutional layers have 128 filters with 
a kernel size of 5 × 5, also followed by max pooling layers with 
the same parameters. We use ReLU activation functions after each 
convolutional layer. The output of the final convolutional layer 
is flattened and passed through a fully connected layer to pro-
duce a 128-dimensional latent representation. This compressed 
representation serves as input to the forecaster.

• Forecaster Architecture: The forecaster takes the latent rep-
resentation produced by the encoder and generates a sequence 
of predicted energy consumption density maps. Our forecaster 
mirrors the encoder’s structure but in reverse, using transposed 
convolutional layers for upsampling. It begins with a fully con-
nected layer that reshapes the latent vector to match the encoder’s 
output dimensions. This is followed by four transposed convolu-
tional layers. The first two transposed convolutional layers have 
128 filters with a 5 × 5 kernel and a stride of 2 for upsampling. 
The next two transposed convolutional layers have 64 filters with 
the same kernel size and stride. Each transposed convolutional 
layer is followed by a ReLU activation function. The output of 
the final transposed convolutional layer is the predicted density 
map sequence.

This encoder–forecaster architecture is particularly well-suited for ur-
ban energy demand forecasting due to its ability to effectively capture 
both the temporal evolution of energy consumption patterns and the 
underlying spatial dependencies across the urban landscape. Energy de-
mand is inherently sequential, exhibiting temporal autocorrelation and 
trends, which encoder–decoder models are designed to handle. Simulta-
neously, spatial factors like building density and land use significantly 
influence energy consumption, requiring models to process spatial 
information. Compared to purely RNN-based approaches, which pri-
marily focus on temporal dependencies, and purely CNN-based models, 
which excel in spatial feature extraction but may struggle with long-
term temporal dynamics, the encoder–forecaster architecture provides 
a balanced approach. It allows the encoder to compress the input spa-
tiotemporal sequence into a rich latent representation capturing both 
aspects, while the forecaster decodes this representation to generate 
future density maps, effectively learning the complex spatiotemporal 
transitions in urban energy demand.

According to studies [52,66], spatiotemporal shifts in energy de-
mand exhibit fluid dynamics characteristics, often correlated with tem-
perature or social activity changes. Spatial correlation in these shifts 
provides a basis for spatiotemporal analysis of urban energy demand. 
We model this as a spatiotemporal sequence prediction problem, taking 
a sequence of coded energy consumption data (density maps) as input 
and generating a fixed number of images as output. Our encoder and 
decoder networks employ stacked AI-based spatiotemporal prediction 
models (Fig.  5). The input image is encoded, and the last encoded state 
initializes the prediction network. To obtain a density map with the 
same dimensionality as the input, all forecasting network states are 
concatenated and fed into a 1 × 1 convolutional layer.

The encoder–forecaster architecture (Eq.  (5)) maximizes the proba-
bility of the ground truth sequence given the input sequence, using the 
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Fig. 5. The encoding and forecasting networks for spatiotemporal sequence prediction. The figure illustrates the encoder–forecaster architecture, detailing the encoding network’s 
transformation of input density maps into a latent representation and the forecasting network’s generation of future density maps from this latent representation. Both networks 
utilize stacked AI-based spatiotemporal prediction modules to capture complex spatiotemporal dynamics.
latent representation and forecaster output. The encoder converts input 
density maps into a compact latent representation encoding essential 
information. The forecaster then uses this to generate predicted density 
maps reflecting temporal dependencies. It predicts the density map 
evolution based on the encoded input and latent representation. 
̂𝑡+1∶𝑡+𝐿 = argmax

𝑡+1∶𝑡+𝐿

𝑝
(

𝑡+1∶𝑡+𝐿 ∣ 𝑡−𝐽+1∶𝑡
)

≈ argmax 𝑝
(

𝑡+1∶∶𝑡+𝐿 ∣ 𝑓encoding 
(

𝑡−𝐽+1∶𝑡
))

≈ 𝑔forecasting 
(

𝑓encoding 
(

𝑡−𝐽+1∶𝑡+𝐿
))

(5)

where the input and output are 3D tensors preserving spatial informa-
tion.

We train the model using the Mean Squared Error (MSE) loss 
function (Eq.  (6)) and optimize it using stochastic gradient descent 
(SGD). 

𝐿 = 1
𝑚𝑛

𝑚,𝑛
∑

𝑖=1,𝑗=1
(𝑖,𝑗 − ̂𝑖,𝑗 ), (6)

where 𝑚 and 𝑛 are the height and width of the energy consumption 
density map,  is the ground truth, and ̂ is the prediction.

4.4.2. AI-based spatiotemporal prediction models
In this study, we employed four classic AI-based spatiotemporal 

prediction modules within the encoder–forecaster architecture: Con-
vLSTM [67], ConvGRU [68], PredRNN [69], and SA-ConvLSTM [70]. 
These models are selected for their proven effectiveness in spatiotem-
poral sequence prediction tasks, particularly in video prediction and 
weather forecasting, which share similarities with urban energy de-
mand forecasting. A key characteristic shared by these models is their 
use of convolutional operations within their recurrent units, enabling 
them to efficiently process spatial information while capturing tempo-
ral dynamics. Fig.  6 illustrates the process flow within each of these 
modules. The network structures of the four models are shown in Fig. 
6 and described in the following.

Convolutional LSTM (ConvLSTM) is an extension of the long 
short-term memory (LSTM) network, which was originally proposed 
to predict future precipitation and precipitation intensity. ConvLSTM 
replaces matrix multiplications in standard LSTM with convolution op-
erations, enabling it to process spatiotemporal data. It uses convolution 
operators rather than matrix multiplication to process data and is able 
to use input from local neighbors and previous states to predict the 
future state. The network structure includes a memory unit that is 
updated at each time step by three sigmoid gates: the input gate, the 
forget gate, and the output gate. These gates control whether the input 
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will accumulate in the memory unit, whether the past state will be 
forgotten, and whether the output will propagate to the final state. The 
ConvLSTM model is able to maintain gradients and preserve long-term 
dependencies.

The update equations for the gates in the ConvLSTM network struc-
ture are defined as follows: 
𝑖𝑡 = 𝜎(𝑊𝑖 ⊗ [ℎ𝑡−1,𝑡] + 𝑏𝑖)

𝑓𝑡 = 𝜎(𝑊𝑓 ⊗ [ℎ𝑡−1,𝑡] + 𝑏𝑓 )

𝑜𝑡 = 𝜎(𝑊𝑜 ⊗ [ℎ𝑡−1,𝑡] + 𝑏𝑜)

𝑔𝑡 = tanh(𝑊𝑐 ⊗ [ℎ𝑡−1,𝑡] + 𝑏𝑐 )

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡
ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡)

(7)

ConvLSTM is included in our model suite due to its proven ca-
pability in capturing spatiotemporal dependencies in sequential data, 
particularly in domains like precipitation forecasting and video predic-
tion, which share similarities with urban energy demand forecasting. Its 
convolutional layers effectively extract spatial features from the density 
maps, while the LSTM units capture temporal dynamics and long-range 
dependencies. Compared to a simpler ConvGRU, ConvLSTM’s explicit 
memory cell and three gates (input, forget, output) may offer a more 
nuanced control over information flow and potentially better capture 
complex temporal patterns in energy consumption.

In these equations, ⊗ denotes the convolution operator; ⊙ denotes 
the Hadamard product; 𝜎 is the logistic sigmoid function; 𝑡 is the input 
at time step 𝑡; 𝑖𝑡, 𝑓𝑡, and 𝑜𝑡 are the input gate, forget gate, and output 
gate, respectively, at time step 𝑡; 𝑔𝑡 is the internal state at time step 𝑡; 
𝑐𝑡 is the memory unit at time step 𝑡; and ℎ𝑡 is the output at time step 𝑡. 
The ConvLSTM network structure is shown in Fig.  6(a).

Convolutional Gated Recurrent Unit (ConvGRU) is an extension 
of the long short-term memory (LSTM) network that uses convolution 
operators rather than matrix multiplication to process data and is 
able to incorporate input from local neighbors and previous states to 
predict the future state. ConvGRU simplifies the LSTM architecture by 
using only two gates, reducing computational complexity. The network 
structure of ConvGRU includes a memory unit that is updated at each 
time step by two sigmoid gates: the reset gate and the update gate. 
These gates control whether the input will accumulate in the memory 
unit and whether the past state will be forgotten. The ConvGRU model 
is able to maintain gradients and preserve long-term dependencies.
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Fig. 6. AI-based spatiotemporal prediction modules for the cells in the encoder–forecaster architecture. (a) ConvLSTM module: Processes input and hidden state through convolutional 
LSTM units to update memory and hidden state. (b) ConvGRU module: Employs convolutional GRU units with reset and update gates for efficient spatiotemporal sequence modeling. 
(c) PredRNN module: Integrates horizontal and vertical LSTM units to capture both spatial and temporal dependencies with zigzag memory flow. (d) SA-ConvLSTM module: 
Incorporates a spatial attention mechanism to weight spatial locations and enhance feature extraction within the ConvLSTM structure.
The update equations for the gates in the ConvGRU network struc-
ture are defined as follows: 
𝑧𝑡 = 𝜎(𝑊𝑧 ⊗ [ℎ𝑡−1,𝑡] + 𝑏𝑧)

𝑟𝑡 = 𝜎(𝑊𝑟 ⊗ [ℎ𝑡−1,𝑡] + 𝑏𝑟)

𝑔𝑡 = tanh(𝑊𝑔 ⊗ [𝑟𝑡 ⊙ ℎ𝑡−1,𝑡] + 𝑏𝑔)

ℎ𝑡 = (1 − 𝑧𝑡)⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ 𝑔𝑡

(8)

ConvGRU is chosen as another recurrent module due to its computa-
tional efficiency and effectiveness in capturing temporal dependencies. 
Similar to ConvLSTM, it utilizes convolutional operations for spatial 
feature extraction. However, ConvGRU has a simpler gated structure 
with only two gates (reset and update), making it computationally 
less expensive than ConvLSTM. While potentially sacrificing some fine-
grained control over memory compared to ConvLSTM, ConvGRU can 
be advantageous in scenarios with limited computational resources or 
when faster training times are desired, while still effectively capturing 
the essential spatiotemporal dynamics of energy demand.

In these equations, ⊗ denotes the convolution operator; ⊙ denotes 
the Hadamard product; 𝜎 is the logistic sigmoid function; 𝑡 is the input 
at time step 𝑡; 𝑟𝑡 and 𝑧𝑡 are the reset gate and update gate, respectively, 
at time step 𝑡; 𝑔𝑡 is the internal state at time step 𝑡; and ℎ𝑡 is the output 
at time step 𝑡. The ConvGRU network structure is shown in Fig.  6(b).

Predictive Recurrent Neural Network (PredRNN) is an extension of 
the long short-term memory (LSTM) network that uses convolution 
operators rather than matrix multiplication to process data and is able 
to incorporate input from local neighbors and previous states to predict 
the future state. PredRNN introduces a unique zigzag memory flow 
and decoupled memory cell structure to better capture long-range spa-
tiotemporal dependencies. The network structure of PredRNN includes 
a memory unit that is updated at each time step by two sigmoid gates: 
the horizontal gate and the vertical gate. These gates control how much 
information is passed from previous states and from local neighbors, 
respectively. The PredRNN model is able to maintain gradients and 
preserve long-term dependencies.
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The update equations for the gates in the PredRNN network struc-
ture are defined as follows: 
𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑔 ⊗ 𝜒𝑡 +𝑊ℎ𝑔 ⊗𝐻 𝑙

𝑡−1 + 𝑏𝑔)

𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ⊗ 𝜒𝑡 +𝑊ℎ𝑖 ⊗𝐻 𝑙
𝑡−1 + 𝑏𝑖)

𝑓𝑡 = 𝜎(𝑊𝑥𝑓 ⊗ 𝜒𝑡 +𝑊ℎ𝑓 ⊗𝐻 𝑙
𝑡−1 + 𝑏𝑓 )

𝐶 𝑙
𝑡 = 𝑓𝑡 ⊙ 𝐶 𝑙

𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡
𝑔′𝑡 = 𝑡𝑎𝑛ℎ(𝑊 ′

𝑥𝑔 ⊗ 𝜒𝑡 +𝑊𝑚𝑔 ⊗𝑀 𝑙−1
𝑡 + 𝑏′𝑔)

𝑖′𝑡 = 𝜎(𝑊 ′
𝑥𝑖 ⊗ 𝜒𝑡 +𝑊𝑚𝑖 ⊗𝑀 𝑙−1

𝑡 + 𝑏′𝑖)

𝑓 ′
𝑡 = 𝜎(𝑊 ′

𝑥𝑓 ⊗ 𝜒𝑡 +𝑊𝑚𝑓 ⊗𝑀 𝑙−1
𝑡 + 𝑏′𝑓 )

𝑀 𝑙
𝑡 = 𝑓 ′

𝑡 ⊙𝑀 𝑙−1
𝑡 + 𝑖′𝑡 ⊙ 𝑔′𝑡

𝑜𝑡 = 𝜎(𝑊𝑥𝑜 ⊗ 𝜒𝑡 +𝑊ℎ𝑜 ⊗𝐻 𝑙
𝑡−1 +𝑊𝑐𝑜 ⊗𝐶 𝑙

𝑡 +𝑊𝑚𝑜 ⊗𝑀 𝑙
𝑡 + 𝑏𝑜)

𝐻 𝑙
𝑡 = 𝑜𝑡𝑡𝑎𝑛ℎ(𝑊1×1 ⊗ [𝐶 𝑙

𝑡 ,𝑀
𝑙
𝑡 ]).

(9)

PredRNN is included to explore the benefits of its predictive recurrent 
network structure for energy demand forecasting. Its zigzag memory 
flow and decoupled memory cell are designed to improve the capture of 
long-range temporal dependencies, which may be crucial for forecast-
ing energy consumption over extended horizons. By explicitly modeling 
both spatial and temporal predictive states, PredRNN aims to enhance 
prediction accuracy, particularly in complex spatiotemporal scenarios.

In these equations, 𝑔𝑡 is the horizontal gate, 𝑖𝑡 and 𝑓𝑡 are the input 
and forget gates, respectively, 𝐶 𝑙𝑡 is the memory unit, 𝑔′𝑡, 𝑖′𝑡, and 𝑓 ′𝑡
are the vertical gate, input gate, and forget gate, respectively, 𝑀 𝑙𝑡 is the 
memory unit from the lower layer, 𝑜𝑡 is the output gate, and 𝐻 𝑙𝑡 is the 
output of the model. The symbols ⊗ and ⊙ represent the convolution 
operator and the Hadamard product, respectively, and 𝜎 is the logistic 
sigmoid function. The variables 𝑊 , 𝑏, and 𝜒 are the weights, biases, 
and input data, respectively. The PredRNN network structure is shown 
in Fig.  6(c).

Spatial Attention Convolutional LSTM (SA-ConvLSTM) is an ex-
tension of the ConvLSTM model that includes a spatial attention mech-
anism to weight the importance of different spatial locations. SA-
ConvLSTM integrates a spatial attention mechanism into the ConvLSTM 
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architecture, allowing the model to focus on spatially relevant features. 
This allows the model to focus on the most relevant spatial features 
and improve the prediction accuracy. The SA-ConvLSTM model consists 
of three components: a ConvLSTM module, a spatial attention module, 
and an output module. The ConvLSTM module processes the input data 
and generates a hidden state, which is passed to the spatial attention 
module. The spatial attention module assigns a weight to each element 
of the hidden state, indicating its importance for the prediction. The 
weighted hidden state is then passed to the output module, which 
generates the final prediction.

The ConvLSTM module in the SA-ConvLSTM model is similar to the 
ConvLSTM model described earlier. It consists of a memory unit that is 
updated at each time step using three sigmoid gates (input, forget, and 
output gates) and a tanh function. The update equations for the gates 
are defined as follows: 
𝜒𝑡 = 𝑆𝐴(𝜒𝑡)
̂𝐻𝑡−1 = 𝑆𝐴(𝐻𝑡−1)

𝑖𝑡 = 𝜎𝑖(𝑊𝑖 ⊗
[

𝐻𝑡−1, 𝜒𝑡
]

+ 𝑏𝑖)
𝑓𝑡 = 𝜎𝑓 (𝑊𝑓 ⊗

[

𝐻𝑡−1, 𝜒𝑡
]

+ 𝑏𝑓 )
𝑜𝑡 = 𝜎𝑜(𝑊𝑜 ⊗

[

𝐻𝑡−1, 𝜒𝑡
]

+ 𝑏𝑜)
𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ⊗

[

𝐻𝑡−1, 𝜒𝑡
]

+ 𝑏𝑐 )
𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡
𝐻𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡)

(10)

The Spatial Attention (SA) module in our SA-ConvLSTM implemen-
tation is a self-attention mechanism, specifically designed to capture 
spatial dependencies within each density map. It operates on the input 
density map 𝜒𝑡 and the previous hidden state 𝐻𝑡−1 separately before 
they are fed into the ConvLSTM unit. The SA module consists of three 
convolutional layers (1 × 1 convolutions for computational efficiency) 
followed by a sigmoid activation function to generate spatial atten-
tion weights. Specifically, for input  (either 𝜒𝑡 or 𝐻𝑡−1), the Spatial 
Attention module computes: 
𝑆𝐴() = 𝜎(𝐶𝑜𝑛𝑣1×1(𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑣1×1(𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑣1×1())))))⊙  (11)

where 𝜎 is the sigmoid function, 𝑅𝑒𝐿𝑈 is the Rectified Linear Unit 
activation function, and 𝐶𝑜𝑛𝑣1×1 denotes a convolutional layer with 
a 1 × 1 kernel. The use of 1 × 1 convolutions allows for efficient 
computation of spatial attention weights, focusing on channel-wise 
feature recalibration at each spatial location without increasing the 
model’s complexity significantly. While self-attention mechanisms are 
used in other spatiotemporal models, our specific SA block is tailored 
for density map inputs and integrated directly before the ConvLSTM 
unit to refine the spatial features at each time step, enhancing the 
model’s focus on spatially salient regions within the urban energy 
consumption maps.

SA-ConvLSTM is included to investigate the impact of spatial at-
tention mechanisms on urban energy forecasting. By incorporating a 
self-attention module, SA-ConvLSTM can adaptively weight the impor-
tance of different spatial locations in the density maps when making 
predictions. This is particularly relevant in urban environments where 
energy consumption patterns are spatially heterogeneous and certain 
areas may exert more influence on future demand than others. Com-
pared to the standard ConvLSTM, the spatial attention mechanism aims 
to enhance the model’s ability to focus on the most salient spatial 
features, potentially leading to improved accuracy and interpretability 
by highlighting important spatial regions.

In these equations, 𝑆𝐴(⋅) is the self-attention module, which helps 
the model to learn more informative and expressive features from the 
input by applying attention mechanisms on different parts of the input. 
𝜎𝑖, 𝜎𝑓 , and 𝜎𝑜 are sigmoid activation functions. 𝑊𝑖, 𝑊𝑓 , 𝑊𝑜, and 𝑊𝑐 are 
the weights of the input, forget, output, and cell gates, respectively. 𝑏𝑖, 
𝑏𝑓 , 𝑏𝑜, and 𝑏𝑐 are the biases of the input, forget, output, and cell gates, 
respectively. ⊗ is the convolution operator, and ⊙ is the Hadamard 
product. 𝑐𝑡 and 𝐻𝑡 are the cell state and hidden state at time step 𝑡, 
respectively. 𝑐  and 𝐻  are the cell state and hidden state at the 
𝑡−1 𝑡−1
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previous time step, respectively. 𝜒𝑡 is the input at time step 𝑡, and 
𝑖𝑡, 𝑓𝑡, and 𝑜𝑡 are the input, forget, and output gates at time step 𝑡, 
respectively. 𝑔𝑡 is the candidate cell state at time step 𝑡. The PredRNN 
network structure is shown in Fig.  6(d).

We summarize the four spatiotemporal prediction models in the 
comparison Table  2. The models are designed to process sequential 
data with both spatial and temporal dependencies. They are strong 
at capturing both temporal and spatial dependencies in the data and 
handling long-range dependencies and complex dynamics. However, 
they may have different levels of efficiency in terms of training and 
optimization. In the experiment section of this study, we evaluated 
and compared the performance of these four spatiotemporal prediction 
models on the task of predicting urban energy consumption.

4.5. Reconstructing energy demand forecasts based on density maps

The output of the spatiotemporal prediction model is a series of en-
ergy density maps. To obtain actual consumption values, we reconstruct 
energy consumption from these density maps using a reverse trans-
formation process. As we use imaging-based methods for prediction, 
the pixel scale may be different between the original domain to the 
predicted domain. Therefore, we must first map the predicted pixel 
values back to the original domain. We assume that the pixel values 
from the original domain to the predicted domain follow a simple linear 
relationship, such that 𝑓 (𝑥) = 𝑎𝑥+𝑏. Given the minimum and maximum 
pixel values of the density map in the original domain, 𝑚𝑖𝑛 and 𝑚𝑎𝑥, 
and the minimum and maximum pixel values of the predicted density 
map, ̂𝑚𝑖𝑛

𝑘  and ̂𝑚𝑎𝑥
𝑘 , we can obtain the corresponding value in the 

original domain for a predicted pixel value using the following formula:

𝑘(𝑥, 𝑦) =
(̂𝑘(𝑥, 𝑦) − ̂𝑚𝑖𝑛

𝑘 )(𝑚𝑎𝑥 − 𝑚𝑖𝑛)

̂𝑚𝑎𝑥
𝑘 − ̂𝑚𝑖𝑛

𝑘

+ 𝑚𝑖𝑛 (12)

where ̂𝑘(𝑥, 𝑦) represents the predicted pixel value at a location (𝑥, 𝑦), 
𝑘 represents the 𝑘-time step ahead for the prediction and 𝑘(𝑥, 𝑦)
represents the pixel value in the original domain. Based on this formula, 
we obtained the 𝑘 time step ahead predicted density map in the 𝑘
time step ahead in the original domain. We now need to calculate the 
consumption values for the point or area of interest. We grid the density 
map with a fixed step size to obtain the spatiotemporal measurements, 
which are the KDE values, and then generate the consumption value 
using the inverse transform sampling approach. In order to obtain a 
finer resolution forecast, we use bilinear interpolation [71] to calculate 
the energy demand of a customer. Bilinear interpolation is a method 
of interpolation that is used to estimate the value of a function at 
a point within a two-dimensional grid based on the values of the 
function at the surrounding grid points. It is called ‘‘bilinear’’ be-
cause it uses linear interpolation in both dimensions. Formally, given 
a set of points (𝑥1, 𝑦1, 𝑓 (𝑥1, 𝑦1)), (𝑥2, 𝑦1, 𝑓 (𝑥2, 𝑦1)), (𝑥1, 𝑦2, 𝑓 (𝑥1, 𝑦2)), and 
(𝑥2, 𝑦2, 𝑓 (𝑥2, 𝑦2)), where (𝑥1, 𝑦1) and (𝑥2, 𝑦2) are the coordinates of the 
corner points of a grid cell and 𝑓 (𝑥, 𝑦) is the function defined at those 
points (see Fig.  7), bilinear interpolation estimates the value of the 
function at an arbitrary point (𝑥, 𝑦) within the grid cell using the 
following formula: 
𝑓 (𝑥, 𝑦) = 1

(𝑥2−𝑥1)(𝑦2−𝑦1)

[

𝑥2 − 𝑥 𝑥 − 𝑥1
]

[

𝑓 (𝑥1, 𝑦1) 𝑓 (𝑥1, 𝑦2)
𝑓 (𝑥2, 𝑦1) 𝑓 (𝑥2, 𝑦2)

] [

𝑦2 − 𝑦
𝑦 − 𝑦1

]

(13)

To perform bilinear interpolation, we first need to determine the 
grid cell that contains the point for which we want to interpolate the 
function. We then use the values of the function at the four corners 
of the grid cell to estimate the value of the function at the desired 
point. For the customer located at the grid point, the 𝑘th day of energy 
demand is calculated as follows: 

𝑓𝑘(𝑥, 𝑦) =
𝑘(𝑥, 𝑦)
 (𝑥, 𝑦)

(14)

where  (𝑥, 𝑦) is the KDE density of the customer number at the 
point (𝑥, 𝑦). Note that the KDE density map for the customer number 
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Table 2
Summary of the four spatiotemporal prediction models.
 Model Network structure Description  
 ConvLSTM Convolutional layers + LSTM 

layers
Uses convolutional layers to extract spatial features and 
LSTM layers to capture temporal dependencies

 

 ConvGRU Convolutional layers + GRU 
layers

Uses convolutional layers to extract spatial features and GRU 
layers to capture temporal dependencies

 

 PredRNN Convolutional layers + PredRNN 
layers

Uses convolutional layers to extract spatial features and 
PredRNN layers to capture long-range temporal dependencies

 

 SA-ConvLSTM Convolutional layers + 
self-attention mechanism + LSTM 
layers

Uses convolutional layers to extract spatial features, 
self-attention mechanism to capture global dependencies, and 
LSTM layers to capture temporal dependencies

 

Fig. 7. Illustrative point energy demand calculation using bilinear interpolation. 
The figure shows a grid cell with four known points (𝑥1 , 𝑦1), (𝑥2 , 𝑦1), (𝑥1 , 𝑦2), (𝑥2 , 𝑦2)
and their corresponding function values 𝑓 (𝑥1 , 𝑦1), 𝑓 (𝑥2 , 𝑦1), 𝑓 (𝑥1 , 𝑦2), 𝑓 (𝑥2 , 𝑦2). Bilinear 
interpolation estimates the function value at an arbitrary point (𝑥, 𝑦) within this cell 
based on a weighted average of the corner point values.

distribution can be obtained by the following, which is similar to the 
energy demand density map in Eq.  (3). 

 =
𝑛
∑

𝑖=1
𝐾ℎ(𝑥 − 𝑥𝑖). (15)

The total energy demand of an area 𝐴 can be calculated as follows:
𝑘(𝐴) =

∑

(𝑥,𝑦)∈𝐴
𝑓𝑘(𝑥, 𝑦), (16)

where 𝑘(𝐴) denotes the total predicted energy demand of the area 𝐴
at the 𝑘th time step.

5. Experiments and results

This section details the experimental evaluation of our proposed 
interpretable, multi-scale urban energy demand forecasting model. We 
detail the experimental setup, including baseline models, implementa-
tion details of our approach, and evaluation metrics. We then present 
the results of our experiments, comparing the performance of our model 
against the baselines across various spatial granularities and forecasting 
horizons. We analyze the impact of key hyperparameters on prediction 
accuracy and demonstrate the model’s ability to generate spatially 
detailed, interpretable forecasts.

5.1. Baseline models and settings

To comprehensively evaluate our proposed model, we compared its 
performance against a range of baseline models, including traditional 
time series forecasting methods and advanced spatiotemporal deep 
learning models.
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5.1.1. Traditional time series forecasting models
• Multiple Linear Regression (MLR): Models the relationship be-
tween past energy consumption and future demand using a linear 
equation. We tuned the number of past time steps (𝑛) included 
in the model, selecting the optimal value based on validation set 
performance.

• ARIMA: Captures temporal dependencies using autoregressive 
(AR), integrated (I), and moving average (MA) components. We 
used an ARIMA(1,0,2) model, determined by analyzing the au-
tocorrelation and partial autocorrelation functions of the time 
series.

• SARIMA: Extends ARIMA by incorporating seasonal patterns with 
seasonal AR, I, and MA components. We initialized the non-
seasonal (𝑝, 𝑑, 𝑞) order with the optimal ARIMA values and tuned 
the seasonal parameters (𝑃 ,𝐷,𝑄,𝑚) via grid search for each 
forecasting horizon.

• Long Short-Term Memory (LSTM): An RNN architecture de-
signed for capturing long-term dependencies. We tuned the num-
ber of hidden units and layers in the LSTM network.

• Optical Flow (Farneback and ROVER):  We applied optical flow 
algorithms (Gunnar Farneback and ROVER [66,72–74]) to the 
density maps, treating energy demand shifts as spatial ‘‘motion’’. 
For ROVER, we used the initialization from [75]. We used default 
parameters for both algorithms due to their limited number of 
hyperparameters.

5.1.2. Advanced spatiotemporal deep learning models
• PhyDNet [76]: A physics-informed model using PhyCell for dy-
namics modeling. We used a patch size of 4 and a learning rate 
of 0.001. Other parameters were kept at their default values.

• PredRNN-V2 [77]: Uses decoupled memory cells and zigzag 
memory flow. We used four hidden layers with 128 units, ker-
nel size 5, stride 1, patch size 4, decoupling coefficient 0.1, 
reverse scheduled sampling, and a cosine annealing learning rate 
schedule (initial learning rate 0.001).

• SimVP [78] and TAU [79]: Both are CNN-based models. We used 
kernel size 3, spatial hidden size 32, temporal hidden size 256, 
8 temporal and 2 spatial convolution layers, DropPath with a 
coefficient of 0.1, and cosine annealing learning rate scheduling 
(initial learning rate 0.001).

This selection of baselines provides a comprehensive benchmark, en-
compassing traditional statistical methods, optical flow techniques for 
motion-based prediction, and state-of-the-art deep learning models for 
spatiotemporal forecasting. The tuned hyperparameters, reported in 
the supplementary material, ensure a fair comparison and facilitate 
reproducibility.

5.2. Proposed model and settings

Our proposed model utilizes a deep learning encoder–forecaster 
architecture (Section 4.4) with four different spatiotemporal prediction 
modules: ConvLSTM, ConvGRU, PredRNN, and SA-ConvLSTM. The 
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Table 3
Optimal Hyperparameters for Deep Learning Models. The table summarizes the optimal hyperparameter configurations iden-
tified for our proposed models and the advanced baseline deep learning models through validation-set based hyperparameter 
tuning. 
 Model Hidden units Dropout rate Batch size Learning rate schedule  
 ConvLSTM 128 0.2 32 Fixed (0.001)  
 ConvGRU 128 0.25 32 Fixed (0.001)  
 PredRNN 128 0.15 32 Cosine Annealing (Initial LR 0.001) 
 SA-ConvLSTM 128 0.2 32 Fixed (0.001)  
 PhyDNet (Default) (Default) (Default) Fixed (0.001)  
 PredRNN-V2 128 0.1 32 Cosine Annealing (Initial LR 0.001) 
 SimVP 256 0.1 32 Cosine Annealing (Initial LR 0.001) 
 TAU 256 0.1 32 Cosine Annealing (Initial LR 0.001) 
encoder and forecaster components of the architecture, along with 
details about each spatiotemporal module, are described in Section 4.4. 
Within this architecture, we explore the performance of each of the four 
modules.

• Baseline Configuration: We initialized all modules with ReLU 
activation functions and 5 × 5 filters. ConvLSTM, ConvGRU, and 
SA-ConvLSTM used 3 unit cell layers, while PredRNN used 2. 
The ReLU activation was selected for computational efficiency 
and to mitigate vanishing gradients, while the 5 × 5 kernel 
size effectively balanced capturing local spatial features with 
computational efficiency for 64 × 64 density maps. The layer 
configuration (3 layers for most models, 2 for the more com-
plex PredRNN) was optimized through validation experiments to 
balance model capacity against overfitting.

• Training Process: Each model is trained for 30 epochs using the 
Adam optimizer with an initial learning rate of 0.001. We use a 
sliding window approach to generate training batches, where the 
input and output sequence lengths are determined by the forecast-
ing time scale (T = 1, 7, 14, 21, or 28 days). The sliding window 
moves by one day to create subsequent batches. Early stopping, 
based on validation loss, is employed to prevent overfitting. The 
30-epoch limit was established based on preliminary experiments 
where performance typically plateaued within this range. Batch 
size was set to 32 after grid search, balancing training stability 
and memory usage. Regularization included dropout (rate 0.2) 
and batch normalization to improve generalization performance. 
During hyperparameter tuning, we explored dynamic learning 
rate scheduling techniques including cosine annealing and step 
decay, but found that the fixed rate of 0.001 with Adam optimizer 
and early stopping provided the most stable training across differ-
ent forecasting horizons and spatial scales. Table  3 summarizes 
the optimal hyperparameters for our proposed models and the 
advanced baseline deep learning models. These were determined 
through an efficient two-step process: initial grid search over a 
coarse hyperparameter space followed by manual refinement in 
promising regions based on validation performance.

• Hyperparameter Tuning: We tuned the following hyperparam-
eters for each module using a combination of grid search and 
manual tuning, optimizing performance on a validation set:

– Number of hidden units in recurrent layers (search range: 
64 to 256)

– Dropout rate (search range: 0 to 0.5)
– Batch size (search range: 16 to 64)
– Learning rate schedule (options: fixed, cosine annealing, 
step decay)

5.3. Evaluation metrics

To evaluate the performance of our proposed model and the base-
line models, we used three widely recognized metrics for image and 
video prediction tasks:
14 
• Mean Squared Error (MSE): MSE is a measure of the difference 
between the predicted value 𝑦̂ and the true value 𝑦. It is defined 
as:

𝑀𝑆𝐸(𝑦, 𝑦̂) = 1
𝑚𝑛

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0
‖𝑦(𝑖, 𝑗) − 𝑦̂(𝑖, 𝑗)‖2

where 𝑚 and 𝑛 denote the height and width of the energy con-
sumption map, respectively.

• Peak Signal-to-Noise Ratio (PSNR): PSNR is a measure of the 
quality of signal reconstruction in fields such as image compres-
sion. It is defined as the ratio of the maximum possible power of a 
signal to the destructive noise power that affects its representation 
accuracy. PSNR is often expressed in logarithmic decibel units and 
is calculated as:

𝑃𝑆𝑁𝑅(𝑦, 𝑦̂) = 10 × log10
𝑚𝑎𝑥(𝑦̂)2

𝑀𝑆𝐸(𝑦, 𝑦̂)
• Structural Similarity (SSIM): SSIM is an indicator used to mea-
sure the similarity between two images. It is defined as:

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝑢𝑦𝑢𝑦̂ + 𝑐1)(2𝜎𝑦𝑦̂ + 𝑐2)

(𝑢2𝑦 + 𝑢2𝑦̂ + 𝑐1)(𝜎2𝑦 + 𝜎2𝑦̂ + 𝑐2)

where 𝑢𝑦 and 𝑢𝑦̂ represent the mean values used to estimate 
brightness, 𝜎𝑦 and 𝜎𝑦̂ represent the standard deviation values used 
to estimate contrast, and 𝜎𝑦̂ is the covariance used to measure 
structural similarity. The predicted value 𝑦̂ is modeled as a com-
bination of brightness, contrast, and structure. The value of SSIM 
ranges from −1 to 1, with a value of 1 indicating that the two 
images are identical.

5.4. Comparison study

Table  4 presents a comprehensive comparison of the forecasting 
performance of traditional methods and deep learning-based spatiotem-
poral prediction models across different time scales, ranging from 1 
day to 28 days. The table reports the performance metrics PSNR, SSIM, 
and MSE for each model and forecasting horizon. The time scales are 
represented by the sequence length of the input energy consumption 
density maps and the generated energy demand prediction maps.

As shown in Table  4, traditional methods like OpticalFlow (ROVER) 
and OpticalFlow (Farneback) exhibit strong performance in ultra-short-
term forecasting (𝐾 = 1), achieving high PSNR and SSIM and low MSE 
values. Based on the results in the table, it is clear that the traditional 
methods, such as OpticalFlow (ROVER) and OpticalFlow (Farneback), 
performed well in ultra-short-term forecasting (e.g., 𝐾 = 1), achieving 
high values for PSNR and SSIM and low values for MSE. However, 
as the time span increases, these methods show a significant drop 
in prediction accuracy, with the MSE values increasing dramatically. 
In contrast, almost all deep learning-based spatiotemporal prediction 
models are able to maintain a high level of accuracy even for longer 
time spans.

Among the deep learning models, SA-ConvLSTM demonstrates supe-
rior performance for shorter time spans (e.g., 𝐾 = 1), while PredRNN 
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Table 4
Comparison of traditional methods and deep learning-based spatiotemporal prediction models. 
 1 Day 7 Days 14 Days 21 Days 28 Days
 PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE  
 OpticalFlow (ROVER) 34.580 0.7329 22.649 34.436 0.7306 23.443 34.438 0.7237 23.434 34.412 0.7189 23.578 34.408 0.7138 23.600  
 OpticalFlow (Farneback) 42.654 0.9903 4.359 39.067 0.9624 9.356 37.667 0.9006 12.361 37.001 0.8355 14.141 36.611 0.7807 15.252  
 ARIMA 34.190 0.9652 24.774 32.067 0.9435 26.334 31.106 0.9311 29.869 30.593 0.9240 33.004 30.036 0.9132 34.368  
 SARIMA 34.190 0.9652 24.774 32.336 0.9482 25.997 32.057 0.9470 28.878 30.972 0.9346 33.026 31.184 0.9198 33.872  
 MLR 40.123 0.9940 7.004 32.855 0.8101 33.696 35.578 0.9024 18.001 28.9154 0.7885 83.471 37.164 0.9080 134.909 
 LSTM 34.214 0.9621 24.642 34.254 0.9651 24.113 34.001 0.9574 25.889 33.837 0.9603 26.872 33.731 0.9565 27.538  
 PhyDNet – – – 34.218 0.7347 56.194 33.405 0.6886 63.691 32.863 0.6548 69.348 32.175 0.6199 77.914  
 PredNN-V2 39.829 0.9920 32.180 37.986 0.9901 33.784 37.244 0.9853 34.884 36.727 0.9840 35.947 36.705 0.9860 33.900  
 SimVP 39.232 0.9923 32.191 38.411 0.9898 34.090 37.948 0.9882 34.635 37.364 0.9894 33.472 36.875 0.9884 33.610  
 TAU 39.614 0.9920 30.886 38.464 0.9897 33.791 37.936 0.9884 34.514 37.231 0.9886 34.336 36.917 0.9880 33.679  
 ConvGRU 41.035 0.9889 11.490 41.154 0.9919 8.831 40.145 0.9910 9.727 39.944 0.9903 10.722 39.894 0.9905 10.447  
 ConvLSTM 40.520 0.9887 10.253 41.430 0.9922 8.496 41.144 0.9914 9.461 40.707 0.9915 9.758 40.052 0.9907 10.555  
 PredRNN 41.118 0.9923 7.200 43.017 0.9917 6.032 42.321 0.9916 6.515 41.568 0.9879 7.446 40.990 0.9882 8.682  
 SA-ConvLSTM 42.665 0.9942 6.547 42.331 0.9928 7.631 41.298 0.9917 8.873 40.886 0.9903 9.793 39.933 0.9902 10.422  
and SA-ConvLSTM outperform others for longer horizons (𝐾 = 14
and 𝐾 = 28). Among the deep learning-based models, SA-ConvLSTM 
showed the best performance for short time spans of input and pre-
dicted sequences, while SA-ConvLSTM and PredRNN significantly out-
performed the other models for longer time spans (e.g., 𝐾 = 14 and 
𝐾 = 28). In particular, PredRNN achieved the highest PSNR and lowest 
MSE values for longer time spans, achieving the highest PSNR and 
lowest MSE values for time spans of 14 and 28 days. This may be due to 
the zigzag information flow of PredRNN, which is helpful in capturing 
the time dependence over long distances.

Table  4 shows that advanced baseline models generally outperform 
traditional methods, but our proposed models (ConvLSTM, ConvGRU, 
PredRNN, SA-ConvLSTM) achieve the best overall performance across 
all forecasting horizons. The advanced baseline models outperform 
traditional methods, likely due to their sophisticated network designs, 
which excel at capturing energy consumption patterns and complex 
relationships within the data. PhyDNet, as a deep learning model 
incorporating physical constraints, exhibits relatively low performance. 
This may be attributed to the significant differences between the tem-
poral characteristics of energy consumption data and physical dynamics 
(e.g., optical flow or motion fields), making it challenging for the model 
to effectively capture the specific patterns of energy consumption. 
However, the latest advanced models fall short compared to deep learn-
ing models utilizing encoding and forecasting networks, which high-
lights the enhanced representational capability of encoder–forecaster 
architecture with multi-layer stacking. The encoder–forecaster archi-
tecture design effectively integrates spatial information and temporal 
dependencies, enabling the modeling of highly nonlinear and complex 
patterns, such as the intricate dynamic changes in energy consumption.

It is worth noting that traditional statistical forecasting methods, 
such as ARIMA and SARIMA, and machine learning-based methods, 
including MLR and LSTM, also struggle in long-term forecasting and 
generally perform worse than the AI-based spatio-temporal prediction 
models. This suggests that the AI-based methods may be more suitable 
for handling the complexity and non-stationarity of long-term spatio-
temporal data. This is likely due to the fact that traditional statistical 
forecasting methods rely on the stationarity and linearity of the raw 
data, which may not hold for longer time spans, while the deep 
learning-based models are able to capture more complex relationships 
and trends in the data. Additionally, the performance of traditional 
methods may be limited by the fact that they rely on relatively small 
amounts of historical data, while the deep learning-based models can 
take advantage of larger amounts of data to better capture long-term 
dependencies.

Overall, the results suggest that the deep learning-based spatiotem-
poral prediction models are promising for accurately forecasting en-
ergy demand at various time scales, with SA-ConvLSTM and PredRNN 
particularly well-suited for longer time spans. In contrast, traditional 
methods tend to perform well in ultra-short-term forecasting, but their 
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accuracy decreases significantly as the time span increases. Advanced 
spatio-temporal prediction methods perform smoothly over a variety of 
time spans but with an overall lower accuracy compared to our model.

5.5. Impact of input parameters on prediction accuracy

In this section, we present a sensitivity analysis to evaluate the 
impact of key input parameters on the prediction accuracy of our 
proposed model. These parameters can influence the model’s ability 
to capture the spatio-temporal patterns and dynamics of urban energy 
consumption. We conduct a series of experiments to evaluate the 
performance of our model under different settings of these parameters 
and compare it with other spatio-temporal prediction models.

The impact of different lengths of input and output sequences.
In previous experiments, the length of both the input and predicted 
frame sequences remained constant. In the following, we investigate 
the effect on the results when the input and predicted frame sequences 
have different lengths. To do this, we fixed the length of the input 
image sequence to 7 and predicted the energy consumption for the 
next 𝐾 = 1, 4, 7, 10, 14 days, respectively. Table  5 summarizes the results 
for varying prediction horizons (K) while keeping the input sequence 
length fixed at 7 days. The results, shown in Table  5, reveal that 
almost all of the spatio-temporal prediction models achieve their best 
performance at 𝐾 = 1. As the value of 𝐾 increases, there is a decreasing 
trend in both PSNR and SSIM, while the value of MSE increases. This 
suggests that these models perform better at shorter prediction times 
with the same length of input frame sequence.

The impact of varying input sequence lengths on prediction 
accuracy. We then consider the question of whether the accuracy of 
the results would be higher if the sequence of input energy density 
maps were longer. To test this, we used images for 𝑇 = 1, 4, 7, 10, 14
days as input to predict energy demand for the next 𝐾 = 7 days. 
Table  6 shows the impact of varying input sequence lengths (T) on 
prediction accuracy for a fixed prediction horizon of 7 days (K=7). 
The results indicate that increasing the input sequence length generally 
improves prediction performance. The results, presented in Table  6, 
show that as the length of the input series increases, all performance 
indicators tend to improve. In particular, the highest SSIM is obtained 
for all models when 𝑇 = 14. This aligns with our expectations, as more 
training samples can improve the fit and robustness of the model, and 
the energy consumption data tends to have trends that the model can 
learn from longer input series. Therefore, when making predictions for 
the same number of days, having more raw data helps the model to 
make more accurate predictions. In contrast, predicting future energy 
demand beyond the length of the input degrades accuracy when the 
length of the time series fed into the model is fixed.

The impact of grid granularity on prediction accuracy. In ad-
dition, we recognize that the granularity of the grid division can also 
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Table 5
Impact of predicted time span 𝐾 on accuracy (input sequence length: 𝑇 = 7). The table shows PSNR, SSIM, and MSE values for different prediction horizons (𝐾 = 1, 4, 7, 10, 14 
days) with a fixed input sequence length of 7 days. Results indicate that prediction accuracy decreases as the prediction horizon increases.
 PSNR SSIM MSE

 ConvLSTM ConvGRU PredRNN SA-ConvLSTM ConvLSTM ConvGRU PredRNN SA-ConvLSTM ConvLSTM ConvGRU PredRNN SA-ConvLSTM 
 𝐾 = 1 42.872 42.523 44.281 44.613 0.9942 0.9936 0.9960 0.9945 6.768 6.505 3.296 5.959  
 𝐾 = 4 41.629 41.719 44.443 43.159 0.9925 0.9927 0.9949 0.9931 8.087 8.203 4.010 6.453  
 𝐾 = 7 41.430 41.154 43.018 42.331 0.9922 0.9919 0.9917 0.9928 8.496 8.831 6.032 7.331  
 𝐾 = 10 41.101 41.318 42.407 42.105 0.9920 0.9920 0.9925 0.9919 8.839 8.556 6.755 8.023  
 𝐾 = 14 41.218 41.282 41.734 41.625 0.9913 0.9915 0.9916 0.9915 9.369 9.289 7.252 7.865  
Table 6
Impact of input time span 𝑇  on accuracy (output sequence length: 𝐾 = 7). The table presents PSNR, SSIM, and MSE values for different input sequence lengths (𝑇 = 1, 4, 7, 10, 
14 days) with a fixed prediction horizon of 7 days. Results demonstrate that increasing the input sequence length generally improves prediction accuracy.
 PSNR SSIM MSE

 ConvLSTM ConvGRU PredRNN SA-ConvLSTM ConvLSTM ConvGRU PredRNN SA-ConvLSTM ConvLSTM ConvGRU PredRNN SA-ConvLSTM 
 𝑇 = 1 39.543 38.979 39.247 40.012 0.9873 0.9835 0.9856 0.9893 12.617 13.767 11.634 10.815  
 𝑇 = 4 40.763 40.580 42.358 41.975 0.9919 0.9912 0.9919 0.9921 8.984 9.811 6.547 8.012  
 𝑇 = 7 41.430 41.154 43.018 42.331 0.9922 0.9919 0.9917 0.9928 8.496 8.831 6.032 7.331  
 𝑇 = 10 41.809 41.646 42.907 42.491 0.9911 0.9916 0.9918 0.9922 9.897 7.988 5.856 7.336  
 𝑇 = 14 41.637 41.716 43.828 42.759 0.9928 0.9926 0.9935 0.9930 8.484 8.174 6.329 6.549  
Table 7
Impact of grid granularity on accuracy (input sequence length: 𝑇 = 7, output sequence length: 𝐾 = 7). The 
table compares PSNR, SSIM, and MSE values for different grid granularities (64 × 64, 200 × 200, 256 × 256 
pixels) with fixed input and output sequence lengths of 7 days. Results indicate that finer grid granularity 
generally improves prediction accuracy but increases computational cost.
 64 × 64 200 × 200 256 × 256
 PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE  
 ConvLSTM 40.614 0.9906 10.729 41.430 0.9922 8.496 41.835 0.9929 7.967 
 ConvGRU 40.437 0.9871 11.033 41.154 0.9919 8.831 41.369 0.9915 8.486 
 PredRNN 42.943 0.9921 6.401 43.018 0.9917 6.032 43.341 0.9935 5.864 
 SA-ConvLSTM 42.385 0.9936 7.247 42.646 0.9931 6.698 42.510 0.9939 6.775 
impact the accuracy of the predictions. To examine this, we conducted 
comparison experiments with grid granularities of 64 × 64, 200 × 200, 
and 256 × 256, using an input sequence of length 7 to predict 7 
future frames. Table  7 summarizes the impact of grid granularity on 
prediction accuracy. The results, shown in Table  7, indicate that almost 
all performance evaluation metrics of the model are best when the grid 
is divided into 256 × 256. This is because dividing the latitude and 
longitude coordinates into smaller blocks can improve the accuracy of 
the predictions by providing each pixel with more specific information 
and reinforcing the spatial correlation with its neighbors. However, it is 
important to note that this improvement in accuracy comes at the cost 
of increased computational cost for model training, so the grid division 
strategy should consider both accuracy and performance factors. In 
summary, we explored the impact of various factors on the accuracy 
of spatiotemporal prediction models for energy demand. The length of 
the input and predicted frame sequences, as well as the granularity 
of the grid division, were all found to affect the performance of the 
models. It was found that shorter prediction times and longer input 
sequences generally led to better accuracy, while finer grid granularity 
also improved accuracy but at the cost of increased computational cost.

In addition, based on the experimental results, it can be con-
cluded that all four models – ConvLSTM, ConvGRU, PredRNN, and 
SA-ConvLSTM – show good performance in forecasting energy demand. 
However, the SA-ConvLSTM model consistently outperforms the other 
three models in terms of accuracy, as demonstrated by its higher PSNR, 
SSIM, and MSE values. The effect of the predicted time span and the 
input time span on accuracy varied among the four models. In general, 
shorter predicted time spans and longer input time spans were found 
to result in higher accuracy for all four models. However, the exact 
relationship between these variables and accuracy differed among the 
models. The impact of the kernel size on accuracy also varied among 
the four models. While larger kernel sizes were generally found to 
result in higher accuracy for the ConvLSTM and ConvGRU models, 
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the PredRNN model showed the highest accuracy with a kernel size 
of 5, and the SA-ConvLSTM model showed the highest accuracy with 
a kernel size of 3. Overall, the SA-ConvLSTM model appears to be 
the most effective among the four models in forecasting energy de-
mand, achieving the highest levels of accuracy across all experimental 
conditions.

5.6. Prediction at different urban spatial scales

One of the key advantages of our proposed model is its ability 
to provide flexible energy demand forecasts at different urban spatial 
scales. Fig.  8 demonstrates the model’s multi-scale forecasting capa-
bility. The figure shows an example of selecting four urban areas of 
interest, labeled A-D, at four different spatial scales on a generated 
energy density map, and generating the corresponding load profiles. 
Note that, on the map, we can zoom in/out and select different area 
sizes to produce the prediction result at different spatial scales. In Fig. 
8, it can be seen that the predicted load profiles almost match the 
ground truth. In fact, the accuracy of the predicted load profiles is 
dependent on the length of the input sequence and the grid granularity, 
as we have studied in Section 5.5. Therefore, these hyperparameters 
can be adjusted to meet different accuracy requirements.

Forecasting energy demand at different urban spatial scales is im-
portant for various sectors, such as generation, transmission, and dis-
tribution, particularly in regions of interest. Accurate energy demand 
forecasts at the regional level can help power plants optimize their 
operations and increase efficiency, while accurate energy demand fore-
casts at the local level can help distribution companies better manage 
their resources and improve service quality. By forecasting energy de-
mand at different spatial scales, a more comprehensive understanding 
of energy consumption patterns can be gained and informed decisions 
can be made to optimize the energy system. While the proposed model 
is capable of predicting energy demand at the individual customer 
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Fig. 8. Urban energy demand forecasting at different spatial scales. The figure illustrates the model’s ability to forecast energy demand at varying spatial granularities. Areas A, 
B, C, and D represent different urban regions selected from the density map, demonstrating multi-scale forecasting. The corresponding load profiles for each area show that the 
predicted demand closely matches the ground truth, highlighting the model’s effectiveness across spatial scales.
level, the high degree of variability at this level may make forecasts 
at the neighborhood or larger spatial scale more useful for utilities, 
especially when the distribution of customers is irregular.

6. Discussion

This study unequivocally demonstrates the critical importance of 
spatial information for achieving accurate and interpretable urban 
energy demand forecasting, a cornerstone for sustainable urban devel-
opment. By integrating spatial heterogeneity into our deep learning 
17 
framework, we achieve significant improvements in prediction accu-
racy and flexibility compared to traditional time-series methods. Our 
imaging-based approach, transforming discrete energy consumption 
data into continuous density maps, allows the model to capture spa-
tial dependencies and correlations across the urban landscape. This 
holistic view, unlike individual predictors limited to metered locations, 
provides a comprehensive understanding of how factors such as popula-
tion density, building typology, and micro-climatic variations influence 
energy demand. The use of kernel density estimation (KDE) enhances 
the model’s robustness by addressing data gaps common in real-world 
applications. KDE effectively imputes missing data, ensuring consistent 
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performance even with incomplete records. Furthermore, our model’s 
ability to reconstruct energy consumption time series from predicted 
density maps facilitates multi-scale forecasting, offering flexibility for 
diverse decision-making processes across various spatial granularities, 
from individual buildings to city-wide levels. The potential integration 
of an interactive user interface could further enhance accessibility, 
allowing stakeholders to intuitively select specific areas and generate 
tailored forecasts.

The encoder–forecaster architecture enables end-to-end predictions 
capturing both temporal patterns and spatial dynamics. This architec-
ture, combined with time series imaging and KDE, addresses traditional 
forecasting limitations and improves the model’s capability to han-
dle nonlinear relationships. The rigorous validation against real-world 
electricity data from Shanghai demonstrates the model’s superior per-
formance across spatial scales and time horizons. Importantly, the 
preservation of 2D spatial information throughout the prediction pro-
cess allows for direct visualization of the forecasted energy distri-
bution, significantly enhancing interpretability compared to methods 
that reduce spatial information to 1D representations. This enhanced 
interpretability is not merely a theoretical advantage; it translates di-
rectly into actionable insights for urban stakeholders. These capabilities 
empower targeted energy management and provide actionable insights 
for urban planning, policy development, and energy management. 
These outcomes contribute to global sustainability goals by promoting 
efficient energy production and distribution, reducing emissions, and 
supporting the integration of renewable energy sources [80,81]. For 
instance, visualizing predicted energy demand as density maps allows 
urban planners to identify high-consumption zones, optimize infrastruc-
ture investments, and evaluate the impact of urban design choices on 
energy efficiency. Policymakers can leverage these interpretable fore-
casts to develop targeted energy conservation programs and incentives, 
while utility operators can enhance grid management and demand 
response strategies with spatially granular predictions.

6.1. Model assumptions, limitations, and uncertainty

While our model offers a robust and interpretable solution, it is 
crucial to acknowledge its inherent assumptions, limitations, and the 
uncertainties associated with forecasting complex real-world systems 
like urban energy demand. While our model presents a significant 
advancement in interpretable urban energy demand forecasting, it is 
important to acknowledge its assumptions, limitations, and inherent 
uncertainties.

• Dataset Considerations:  While the Shanghai Pudong dataset pro-
vides a valuable foundation for our study, it is essential to rec-
ognize its inherent limitations which could influence the broader 
applicability of our findings.

• Generalizability: The dataset, being specific to Pudong District, 
Shanghai, may not fully encapsulate the diverse urban energy con-
sumption patterns observed globally. Variations in urban morphol-
ogy, climate, socio-economic factors, and building stock across cities 
could affect the direct transferability of the model without adapta-
tion and retraining on local data. Therefore, applying our model to 
cities with vastly different characteristics should be approached with 
caution without proper recalibration.

• Spatiotemporal Data Integration, not Segregation: It is s impor-
tant to clarify that our model is designed to capture the inherent 
interplay between spatial and temporal variations in urban energy 
demand, rather than segregating them. Urban energy consumption is 
fundamentally a spatiotemporal phenomenon, where spatial patterns 
evolve over time due to complex interactions of various factors. 
Attempting to strictly ‘‘segregate’’ spatial and temporal variations 
would oversimplify the problem and likely lead to a loss of valuable 
information and predictive accuracy. Our approach, using time series 
imaging and 2D-CNN based recurrent networks, is explicitly designed 
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to model these intricate spatiotemporal dependencies in a holistic 
manner, recognizing that spatial and temporal aspects are inherently 
intertwined in urban energy dynamics.

• Sampling Bias: Despite SGCC’s efforts towards representative cus-
tomer sampling, potential biases related to customer demographics 
(e.g., income levels, household size) or building types (e.g., preva-
lence of older buildings, types of HVAC systems) might exist within 
the dataset. Such biases, if present, could subtly skew the learned 
patterns and affect forecast accuracy in scenarios with differing de-
mographic or building characteristics.

• Contextual Data Scarcity: The absence of granular contextual infor-
mation within the dataset, such as detailed building characteristics 
(e.g., insulation levels, building age, occupancy schedules), high-
resolution weather data, or real-time socio-economic indicators, rep-
resents a limitation. Integrating such multi-source data could enrich 
the model’s input features, potentially leading to more accurate and 
nuanced predictions by capturing a wider spectrum of influencing 
factors. Future research should prioritize incorporating such readily 
available urban datasets to enhance model fidelity and predictive 
power.

Our model operates under the assumptions of spatial autocorrela-
tion (nearby locations exhibit similar energy consumption patterns due 
to shared factors) and temporal dependence (past consumption informs 
future consumption). While generally reasonable for urban energy 
modeling, deviations from these assumptions can occur, particularly 
in areas with unique characteristics (e.g., industrial zones or areas 
undergoing rapid development). We also assume that the KDE process 
effectively transforms discrete spatial data into continuous representa-
tions, and that a linear transformation adequately maps predicted pixel 
values back to the original domain. While KDE handles data gaps and 
smooths the representation, it may not perfectly capture highly local-
ized variations. Similarly, the linear mapping, while generally accurate, 
could introduce minor errors in regions with non-linear relationships. 
Lastly, the model assumes the training data is representative of the 
target urban environment. However, variations in climate, population 
density, and socio-economic activity across different cities necessitate 
adaptation through retraining or fine-tuning with local data.

Furthermore, several limitations should be considered. The model’s 
reliance on large training datasets, though mitigated by the increas-
ing prevalence of smart meters [82], remains a practical constraint. 
More significantly, forecasting urban energy demand involves inherent 
uncertainties stemming from abrupt changes in consumption patterns 
(due to factors like extreme weather, policy shifts, or socio-economic 
changes), technology disruptions, and evolving regulatory landscapes. 
While our model incorporates robustness through KDE and noise in-
jection during training, it does not explicitly quantify uncertainty in its 
predictions. The lack of uncertainty quantification can limit the model’s 
usefulness for decision-making, as stakeholders need to understand 
the range of potential outcomes and the confidence level associated 
with the forecasts. The model’s generalizability to other urban contexts 
requires further exploration. Direct application to cities with different 
characteristics may require adjustments to model parameters, spatial 
granularity, time steps, and the incorporation of city-specific data [83].

6.2. Model generalization and adaptability

While our validation using Shanghai Pudong data is promising, the 
broader generalizability of our model to diverse urban environments 
remains an important consideration for future deployment. Urban en-
ergy consumption is shaped by a complex interplay of factors that 
vary significantly across cities worldwide. Climate zones, urban layouts 
(ranging from grid-based to organic street patterns), building stock 
characteristics (age, insulation, prevalent building types), and socio-
economic profiles all contribute to unique energy demand dynamics. 
These inter-city variations imply that a model trained on Shanghai 
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data may encounter performance degradation when directly applied to 
cities with substantially different characteristics. For example, cities in 
colder climates with a higher proportion of older, less energy-efficient 
buildings might exhibit different seasonal demand peaks and spatial 
consumption patterns compared to Shanghai.

To effectively adapt our model for broader urban applicability, 
several strategic approaches can be pursued. Retraining the model 
using local energy consumption data from the target city is a pri-
mary and essential step to capture city-specific dynamics. Furthermore, 
transfer learning techniques offer a promising avenue, allowing for fine-
tuning pre-trained models (initially trained on Shanghai data or other 
large urban datasets) with smaller, city-specific datasets, potentially 
accelerating adaptation and improving performance even with limited 
local data availability. Crucially, incorporating city-specific contex-
tual features as additional input channels to the model represents a 
key direction for future development. This includes integrating read-
ily available datasets such as local weather forecasts (temperature, 
humidity, solar radiation), high-resolution population density maps, 
detailed building type distributions (residential, commercial, industrial 
mix), and even relevant socio-economic indicators (average income, 
employment rates). By enriching the model with such multi-source 
urban data, we can enhance its sensitivity to local conditions and 
improve its predictive accuracy and robustness across diverse urban 
landscapes. Future research should systematically evaluate the model’s 
performance across a wider range of cities with varying characteristics, 
empirically assess the effectiveness of different adaptation strategies 
(retraining, fine-tuning, contextual feature integration), and develop 
robust guidelines for model deployment in diverse urban contexts.

In summary, this study contributes a practical solution for inter-
pretable, multi-scale urban energy demand forecasting. However, ac-
knowledging these assumptions, limitations, and the inherent uncer-
tainty associated with energy forecasting is crucial for guiding future 
research and model refinement, paving the way for more robust and 
reliable decision-support tools.

7. Conclusions and future work

Accurate, spatially detailed, and interpretable energy demand fore-
casting is essential for effective energy management, infrastructure 
planning, and the transition to sustainable urban environments. This 
study addressed this critical need by developing a novel deep learning 
model integrating time series imaging, kernel density estimation (KDE), 
and an encoder–forecaster architecture to capture the complex spa-
tiotemporal dynamics of urban energy consumption. By transforming 
discrete data into continuous density maps, our model leverages CNNs 
to extract spatial features and learn intricate dependencies. Impor-
tantly, the preservation of the 2D spatial structure throughout the pre-
diction process enhances the interpretability of the forecasts, providing 
valuable spatial insights. Validation using real-world data from Shang-
hai’s Pudong District demonstrated superior performance compared to 
traditional and state-of-the-art methods, empowering stakeholders to 
make informed decisions toward more sustainable energy systems.

While our model demonstrates promising results, future research 
will focus on enhancing its capabilities and addressing its limitations. 
We plan to incorporate uncertainty quantification techniques, such as 
probabilistic forecasting, Bayesian deep learning, and ensemble meth-
ods, to provide more robust and informative predictions. Furthermore, 
integrating additional data sources, including weather forecasts, socio-
economic indicators, building characteristics, and technology trends, 
will improve predictive accuracy and provide deeper insights into 
the factors driving energy consumption. Enhancing the model’s inter-
pretability through advanced visualization tools, enabling interactive 
exploration of the spatial distribution of predicted demand and analysis 
of input variable influence, is another key objective. Finally, we aim 
to integrate our model with real-time energy management systems for 
dynamic adaptation and explore methods for adaptive learning and 
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model updating to maintain accuracy in evolving urban environments. 
These advancements will contribute to more effective and robust ur-
ban energy planning, supporting the development of sustainable and 
resilient cities.
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